34,633 research outputs found
Deep anistropic shell program for tire analysis
A finite element program was constructed to model the mechanical response of a tire, treated as a deep anisotropic shell, to specified static loads. The program is based on a Sanders Budiansky type shell theory with the effects of transverse shear deformation and bending-extensional coupling included. A displacement formulation is used together with a total Lagrangian description of the deformation. Sixteen-node quadrilateral elements with bicubic shape functions are employed. The Noor basis reduction technique and various type of symmetry considerations serve to improve the computational efficiency
A computer program for anisotropic shallow-shell finite elements using symbolic integration
A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language
A monetarist model for economic stabilization
Money supply ; Economic stabilization ; Monetary theory
A monetarist model for economic stabilization
Monetary theory ; Economic stabilization
Free vibrations of laminated composite elliptic plates
The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination
Finite element modeling and analysis of tires
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included
Coreshine in L1506C - Evidence for a primitive big-grain component or indication for a turbulent core history?
The recently discovered coreshine effect can aid in exploring the core
properties and in probing the large grain population of the ISM. We discuss the
implications of the coreshine detected from the molecular cloud core L1506C in
the Taurus filament for the history of the core and the existence of a
primitive ISM component of large grains becoming visible in cores. The
coreshine surface brightness of L1506C is determined from IRAC Spitzer images
at 3.6 micron. We perform grain growth calculations to estimate the grain size
distribution in model cores similar in gas density, radius, and turbulent
velocity to L1506C. Scattered light intensities at 3.6 micron are calculated
for a variety of MRN and grain growth distributions to compare with the
observed coreshine. For a core with the overall physical properties of L1506C,
no detectable coreshine is predicted for an MRN size distribution. Extending
the distribution to grain radii of about 0.65 m allows to reproduce the
observed surface brightness level in scattered light. Assuming the properties
of L1506C to be preserved, models for the growth of grains in cores do not
yield sufficient scattered light to account for the coreshine within the
lifetime of the Taurus complex. Only increasing the core density and the
turbulence amplifies the scattered light intensity to a level consistent with
the observed coreshine brightness. The grains could be part of primitive
omni-present large grain population becoming visible in the densest part of the
ISM, could grow under the turbulent dense conditions of former cores, or in
L1506C itself. In the later case, L1506C must have passed through a period of
larger density and stronger turbulence. This would be consistent with the
surprisingly strong depletion usually attributed to high column densities, and
with the large-scale outward motion of the core envelope observed today.Comment: 6 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
Uni-directional polymerization leading to homochirality in the RNA world
The differences between uni-directional and bi-directional polymerization are
considered. The uni-directional case is discussed in the framework of the RNA
world. Similar to earlier models of this type, where polymerization was assumed
to proceed in a bi-directional fashion (presumed to be relevant to peptide
nucleic acids), left-handed and right-handed monomers are produced via an
autocatalysis from an achiral substrate. The details of the bifurcation from a
racemic solution to a homochiral state of either handedness is shown to be
remarkably independent of whether the polymerization in uni-directional or
bi-directional. Slightly larger differences are seen when dissociation is
allowed and the dissociation fragments are being recycled into the achiral
substrate.Comment: 9 pages, 4 figures, submitted to Astrobiolog
- …