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SUMMARY 

A finite element program has been constructed to model the 

mechanical response of a tire, treated as a deep anisotropic shell, to 

specified static loads. The program is based on a Sanders-Budiansky 

type shell theory with the effects of transverse shear deformation and 

bending-extensional coupling included. A displacement formulation is 

used together with a total Lagrangian description of the deformation. 

Sixteen-node quadrilateral elements with bicubic shape functions are 

employed. The Noor basis reduction technique and various types of 

symmetry considerations serve to improve the computational efficiency. 



INTRODUCTION 

The study of the behavior of aircraft tires by analytical methods presents 

many challenges. Any significant tire computations must involve the solution of 

systems of equations which are highly nonlinear and should account for a variety of 

physical effects, such as anisotropic and nonhomogeneous material properties, large 

deformations, the generation of heat, and the interaction between thermal and 

material characteristics. Thus a considerable amount of mathematical and 

programming effort is needed to keep the computation costs within reason. 

The purpose of this report is to describe a finite element computer program 

designed as a first step in a tire analysis project. The program is limited to a 

nonlinear analysis of a laminated anisotropic linearly elastic shell subjected to 

static conservative loading. A Sanders-Budiansky type deep-shell theory (refs. I 

and 2) is employed with the effects of transverse shear deformation and bending

extensional coupling included. Normals to the undeformed shell reference surface 

are assumed to remain straight lines in the deformed shell, and rotations are 

assumed to be moderate but not large. The undeformed shell is assumed to be 

axisymmetric and to have elliptic cross section; although other more general cross 

sections can be easily accommodated. The program is based on a total-Lagrangian 

displacement formulation with five fundamental unknowns. Sixteen-node bicubic 

quadrilateral elements are employed; and, thus, there are 80 degrees of freedom 

associated with each finite element. The necessary integrals are evaluated through 

the use of numerical quadrature. 

The coordinate directions are chosen to be along the principal lines of 

curvature, and the elements are rectangular with respect to the surface 

coordinates. Due to the large sizes of the arrays of stiffness coefficients 

generated, a computational strategy is employed which requires that only portions 

of the arrays be in central memory at any given time. Permutational symmetry is 

exploited to reduce the amount of storage used. The Noor basis reduction technique 

[refs. 3 through 6] is used in the program to reduce the computational expense. 

Two sample problems are solved using the computer program. Both involve 

toroidal shells with static uniform pressure loading, and the solutions exhibit 

axial and reflection symmetries. 
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A a 

a 

a a 

a . a,1 

a a,i,q 

SYMBOLS 

coefficients of first fundamental form 

semimajor axis of cross section 

curvature quantities defined in equation (7) 

strain approximation functions defined in equation (20) 

values of strain approximation functions at quadrature points 

components of second fundamental form 

toroidal radius 

CaS (a,S = 1,2,6) extensional stiffnesses of shell 

CaS (a,S 4,5) shear stiffnesses of shell 

composite matrix of shell stiffnesses 

c distance between beads of tire 

DaS (a,S = 1,2,6) bending stiffnesses 

v(-) 
a 

D . a,1 

D(+) 
a,i 

D 
a,i,q 

D(+) 
a,i,q 

D(-) 
a,i,q 

E 

differential operators defined in equation (8) 

differential operators defined in equation (8) 

differential operators defined in equation (8) 

strain approximation functions defined in equation (20) 

strain approximation functions defined in equation (20) 

strain approximation functions defined in equation (20) 

values of strain approximation functions defined in equation (20) 

values of strain approximation functions defined in equation (20) 

values of strain approximation functions defined in equation (20) 

Young's modulus of isotropic material 

Elastic moduli parallel to and perpendicular to the tire cords, 

respectively 
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FaS (a,S = 1,2,6) stiffness interaction coefficients of shell 

F1JK 
ijk array of nonlinear stiffness coefficients 

I~L Gijkl array of nonlinear stiffness coefficients 

GLT,GTT 
shear moduli in plane of cords and normal to it, respectively 

h thickness of shell 

K a 
differential operator defined in equation (8) 

K a,i strain approximation functions defined in equation (20) 

K 
a,i,q values of strain approximation functions at quadrature points 

K~~ linear stiffness coefficients 
1J 

kl ,k2 curvatures of shell 

MaS bending stress resultants 

NaS extensional stress resultants 

N. 
1 

shape functions 

n q number of quadrature points 

Pa'P external load intensities in coordinate directions 

Qa 
transverse shear stress resultants 

u strain energy of shell 

ua'w displacement components in coordinate directions 

W work done by external forces 

X a lines of curvature surface coordinates 

xl ,x2 ,x
3 

Cartesian coordinates 

Ya,q quantities defined in equation (25) 

EaS extensional strains 

Ea3 transverse shear strains 

E A,q values of strains at quadrature points 

KaS curvature changes and twist of shell reference surface 
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IT 

a A,q 
I a, . A,1,q 

Poisson's ratio for isotropic materials 

Poisson's l'atio measuring strain in transverse direction due to 

uniaxial normal stress in direction of cords 

Governing functional to be minimized 

values of stress resultants at quadrature points 

quantities related to linear part of stress, definition in 

equation (28) 

shell rotation components 

shell rotation about the normal to the surface 

values of normal rotation at quadrature points 

nodal displacement parameters 

shell domain 

Unless otherwise specified the ranges of the indices are as follows: 

a,S = 1,2 

A,~ 1 + 8 

i,j,k,l = 1 + 16 

I,J,K,L = 1 + 5 

q = 1 + n 
q 

MATHEMATICAL FORMULATION 

The mathematical formulation is based on a Sanders-Budiansky type deep shell 

theory which includes the effects of transverse shear deformation, anisotropic 

material behavior and bending-extensional coupling. A total Lagrangian description 

of the shell deformation is used and the shell configurations are referred to lines 

of curvature coordinates of the undeformed shell. Only static deformations are 

considered, and the initial configuration of the shell is assumed to be a 

moment less state. A displacement formulation is used in which the fundamental 

unknowns consist of five generalized displacements -- the two tangential 

displacement components, u
l 

and u
2

; the normal displacement w; and the two rotation 
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components ~l and ~2. The generalized displacements are shown schematically in 

Figure 1. The shell stiffness coefficients are obtained by using the principle of 

minimum potential energy. 

The Governing Functional 

The governing functional employed in this study is given by 

rr(ul,u2,w'~1'~2) = u - W (1) 

where U is the strain energy due to deformation and W is the potential energy of 

the external forces. The expression for W in terms of the displacements u
l

,u
2 

and 

w is 

w =~n(PI ul + P2 u2 + P w) dn 

where Pl,P2 and p are given external load intensities (see Fig. 1) and n is the 

shell domain. 

The strain energy is expressed in terms of the strains, Ell' E22 , E12 , Kll , 

K22 , KI2 , E13 and E23 , and the stress resultants NIl' N22 , N12 , ~ll' M22 , M12 , Ql 

and Q2' by 

U =~n (Ell NIl + E22 N22 + 2 E12 N12 

+ Kll Mil + K22 M22 + 2 K12 M12 

+ 2 £13 Ql + 2 £ 23 Q2) dn 

The stress-strain relations are assumed to be linear and to have the form 

Nll C
ll 

C12 C16 Fll F12 F16 0 0 Ell 

N22 C12 C22 C26 F12 F22 F26 0 0 E22 

N12 C16 C26 C66 F16 F
26 

C66 0 0 2 E12 

MIl Fll F12 F16 DIl D12 D16 0 0 Kll 

M22 FI2 F22 F
26 D12 D22 D26 0 0 K22 

M12 F16 F26 F66 DI6 D26 D66 0 0 2 K12 

Q~ 0 0 0 0 0 0 C
SS 

CS4 2 E13 

Q2 0 0 0 0 0 0 C
S4 

C
44 2 E23 

6 
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where the CIS, D's and F's are the extensional, bending and stiffness interaction 

coefficients, respectively, appropriate for a laminated anisotropic shell. 

For a shell in which the directions of principal curvature, k1 and k2 , are 

along the coordinate directions the strain-displacement relations may be 

represented by 

V(-) 
2 

o 

o o 

-k 
2 

o 

o 

o 

o 

o 

o 

o 

v(-) 
2 

1 

o 

o 

o 

o 

1 

w 

¢ + 
1 

(1/2)(k
1 

u
1 

- V1w)2 + (1/2)¢2 

(1/2)(k
2 

u
2 

- V2w)2 + (1/2)¢2 

(k
1 

u
1 

- V
1

w) (k
2 

u2 - V2w) 

o 

o 

o 

o 

o 

where ¢, the rotation about the normal to the shell, is given by 

the quantities a
1 

and a
2 

are given by 

-1 
a = (A1 A2) aA

3 
lax a -a a (a = 1,2; no sum) 

and A1 and A2 are quantities related to the first fundamental form of the shell 

reference surface (see below). In equations (5) and (6) Va' V~+), V~-) and Ka are 

differential operators defined by 

V f = (A )-1 af/aX 
a a a 

(a = 1,2; no sum) 

V(-)f = V f - a f 
a a a 

(5) 

(6) 

(7) 

(8) 
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where f is any function defined on the shell domain. Through the use of equations 

(1) to (8) the functional IT can be expressed as a function of the five generalized 

displacements, the stiffness of the material, and the geometry of the shell 

surface. 

Surface Coordinates and Geometry 

The reference surface of the undeformed tire is approximated by a toroid with 

surface coordinates Xl and X2; and the coordinate directions are chosen to be along 

the lines of principal curvature. The first and second fundamental forms of the 

surface then are 

(A )2 dX 2 + (A )2 dX 2 
1 1 2 2 (9) 

and 

(10) 

respectively. The curvatures of the shell surface along the coordinate directions 

are thus 

and the twist k12 is zero. 

For such a surface the surface integrals appearing in equations (2) and (3) 

may be written as 

f·· . 
n 

Mathematically the simplest choice of toroid is the torus, a toroid with 

circular cross section. Let the cross-sectional radius be a and the toroidal 

radius be b. In this case the Cartesian coordinates are 

a cos Xl 

(b + a sin Xl) cos X2 

and 

8 
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Al = a 

A2 = b + a sin Xl 

BI! = - a 

= -

Consequently, 

-1 
a 

(14) 

(15) 

A surface which is nearly as simple to represent mathematically but somewhat more 

appropriate for representing an aircraft tire is a toroid whose cross section is an 

ellipse with eccentricity e, semimajor axis a, and semiminor axis a;f 1 - e2 • In 

this case 

and 

2 sin a (1 - e ) Xl 
[b + ] sin X2 1 + e cos Xl 
a (e + cos Xl) 

1 + e cos Xl 

2 sin a (1 - e ) Xl 
[b + ] cos X2 1 + e cos Xl 

Al = a (1 - e 2) (1 + e cos X
l
)-2 [1 + e (2 cos Xl + e)]l/2 

2 -1 
A2 = b + a (1 - e ) sin Xl (1 + e cos Xl) 

Bll = - a (1 - e 2) (1 + e cos Xl)-l [1 + e (2 cos Xl + e)]-1/2 

-1/2 
B22 = - A2 sin Xl [1 + e (2 cos Xl + e)] 

kl = [a (1 - e2)]-1 (1 + e cos X
l
)3 [1 + e (2 cos Xl + e)]-3/2 

k2 = A2- l sin Xl [1 + e (2 cos Xl + e)]-1/2 

(16) 

(17) 
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More accurate representations of the cross section of a particular tire 

geometry may be gained by the use of such forms as 

[b + f(Xl )] sin Xz 
g(Xl ) 

[b + f(Xl )] cos Xz 

(18) 

where f and g are suitably chosen functions. The use of these more elaborate cross 

sections would require little additional computational effort. 

Finite Element Discretization 

Each of the five generalized displacements are approximated within a given 

finite element 

Thus within an 

ul 
1jJl N. i 1 

Uz 1jJZ 
i Ni 

w ~ 1jJ~ N. 
1 1 

¢l = 1jJ4 N. i 1 

5 ¢Z = 1jJ. N. 
1 1 

domain with the use of the same set of bicubic shape functions. 

element 

(i = 1 -+ 16) 

where Ni = Ni(Xl,XZ) and repeated indices imply summation. The lower case Latin 

indices range from 1 to 16. 
( 

(19) 

Since the differential operators of equations (5), (6) and (8), in effect, act 

only on the shape functions N
i

, a set of "strain approximation functions" is 

introduced 

K . (Xl,XZ) a,1 
(a = 1,Z) 

10 
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ka ,i(XI ,X2) = ka Ni (XI ,X2) 

aa,i(X1,X2) = aa Ni (XI ,X 2) 

Further, since the integrals in equations (2) and (3) are to be evaluated through 

the use of numerical quadrature, only the values of the resulting functions at the 

quadrature points (Xl ,X
2 

) are of interest. Accordingly, let ,q ,q 

N = N. (Xl ,X2 ) i,q 1 .,q ,q 

D a,i,q D i (Xl ,X2 ) a, ,q ,q 

D(+~ (+) 
D i (Xl 'X2 ) a,1,q a, ,q ,q 

(-) (-) 
(a 1,2; i 1 -+ 16; q 1 -+ n ) D D i (Xl 'X2 ) = = = a,i,q a, ,q ,q. q (21) 

K = K (X ,X ) a,i,q a,i 1,q 2,q 

k a,i,q ka,i(X1,q,Xz,q) 

a . a,1,q a i (Xl ,X2 ) a, ,q ,q 

where n is the number of quadrature points per element. Then the values of the q 
strains at the quadrature points are 

£ A,q 
= £(L) + £(NL) 

A,q A,q (A = 1 -+ 8) (22) 

where the linear part of the strain is 

D l,i,q a 
2,i,q k 

l,i,q 0 0 

D k 0 0 
1 a ljJi l,i,q 2,i,q 2,i,q 

(-) (-) 
0 0 0 ljJ2 D D 2,i,q 1,i,q i 

0 0 0 D a2 . 1jJ3 
(L) l,i,q ,1,q i 

£ = A,q 
0 0 0 ljJ4 a D l,i,q 2,i,q i 

(23) 

K K 0 
(-) ( -) ljJ5 D D 2,i,q l,i,q 2,i,q l,i,q i 

-k l,i,q 0 D l,i,q N i,q 0 

0 -k 2,i,q D 2,i,q 0 N i,q 
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and the nonlinear part is 

(1/2) Y1 ,q Y1 ,q + (1/2) ~q ~q 

(1/2) Y2 ,q Y2 ,q + (1/2) ~q ~q 

~l,q ~2,q 

where 

(NL) 
E:A = ,q 

k ,,,i _ 
Ya,q = 'I' a,i,q a 

~ = (1/2) (D(+) 
q 1,i,q 

o 

o 

o 

o 

o 

D 1jJi (a 
a,i,q 3 

1,2; no sum on a) 

Equation (23) may be written more concisely in the form 

(L) 
E: A,q 

wherein 1 is summed from·1 to 5 and i is summed from 1 to 16. 

The values of the stress resultants at the quadrature point q are given by 

(A = 1 + 8; q = 1 + n ) 
q 

where CAll (A,ll = 1 + 8) is the matrix appearing in equation (4). The use of 

numerical quadrature and the presence of Jacobians brings in a set of weights 
I W (q = 1 + n). It seems useful to define a set of quantities 0,. by q q I\,l.,q 

(L) - (L) - ~I ",1 
W 0, = w C, E: = W C'lI ~ i 'l'i q I\,q q I\ll ll,q q 1\1-' ll, ,q 

(A = 1 + 8; q = 1 + n ) 
q 

where I is summed from 1 to 5 and i is summed from 1 to 16. 
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By using the above approximations to the governing functional IT in terms of 
I 

the W., by summing over the quadrature points, and by differentiation with respect 
1 

I 
to W., the discretized equations for an element are seen to have the general form 

1 

(29) 

where the arrays of stiffness coefficients, K, F and G, are expressed in terms of 

o~ i ,the quantities defined by equation (21), and the CIS, Fls and DIs of 
A, ,q 

equation (4). The linear stiffness array K~~ is given by 
1J 

I J 
£, 0,. A,i,q A,J,q (30) 

wherein A is summed from 1 to 8 and q is summed from 1 to n. The nonlinear 
IJK IJKL q 

stiffness arrays F
ijk 

and Gijkl have more complex definitions and are specified in 

the computer program (see also ref. 7). 

In equation (29) the arrays K, F and G may be thought of as having only two, 

three and four indices, respectively, if pairs of indices, each pair consisting of an 

upper index and the index directly beneath it, are replaced by a single index 

ranging from 1 to 80. Then, after assembling the contributions from all the 

elements, the discretized equations have the form 

(31) 

where the underscored indices range from 1 to 5 Nand N is the total number of 

nodes in the structure. Equation (31) is solved by Newton-Raphson iteration using 
th at the n step the equations 

(K .. + F"
k ~J. ~;L 

p -
i 

,,,(n) + G ,,,(n) ",(n» ~",(n) 
~~ ijkl ~~~! ~j 

K ",(n) _ (1/2) F ,,,(n) ,,,(n) / ) ,,,(n) ",(n) ,,,(n) 

W(n+l) = 
i 

!j ~l !1~ ~j ~k - (1 3 G!l~! ~j ~k ~1 
(32) 

13 



SYMMETRY CONSIDERATIONS 

Special attention is given to the symmetry properties of the arrays of 

stiffness coefficients. The symmetries are of two very different types -- symmetry 

of the arrays under permutations of the array indices, and symmetry under 

interchange of the two tangential coordinate directions. 

The permutational symmetry is symmetry in the sense that the components in the 

upper triangular part of a symmetric matrix are copies of the components in the 

lower triangular part. The elen;ent stiffness coefficients arrays in equation (29), 
IJ IJK IJKL 

K
ij

, F
ijk 

and G
ijkl

, ar~ constructed so as to be totally symmetric under the 

interchange of any upper-lower pair of indices with any other such pair. This 
IJ 

means that nearly half of the components in thE! array Kij are copies of other 
IJ components in the array K
ij

, that approximately one sixth of the components of the 
IJK array F
ijk 

are independent, and that only approximately one twenty-fourth of the 
IJKL components of the array G
ijkl 

are independent. For this reason and because of the 

large number of coefficients, it is important to deal only with the independent 

components so as not to generate or store an unnecessarily large number of 

coefficients. For this project the computer implementation of the permutational 

symmetries is complicated by the fact that the nonlinear arrays are so large that 

only portions of them can be held in computer memory at anyone instant of time. 

The second type of symmetry refers not to equal numerical values (as in the 

first type) but to symmetry in the underlying algebraic expressions. Taking this 

type of symmetry into account allows one block of computer code to be used for the 

generation of two different sets of numerical values. This reduces the amount of 

computer code and simplifies debugging. 

Neither of these symmetry considerations is to be confused with the presence 

or absence of spatial symmetry in the tire configuration. 

COMPUTATIONAL PROCEDURE 

The first major computational goal is the evaluation of the characteristic 

KIJ F1JK GIJKL and pI for each finite element. For this Gaussian arrays ij' ijk' ijk1 i 
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quadrature is used with index q ranging from 1 to n = Z5. The characteristic 
q 

arrays are evaluated only once and are saved on disk files for repeated subsequent 

use. 

Preliminaries to the Generation of the Elemental Characteristic Arrays 

As a preliminary to the evaluation of the elemental characteristic arrays, the 

geometric quantities AI' AZ' kl , k2, aI' a 2 (see eqs. (7) and (17» are evaluated 

at the quadrature points of an element. Then the shape functions and the strain 

approximation functions are evaluated at the quadrature points (see eqs. (ZO) and 

(Zl». In order to exploit the symmetry of the algebraic form of the finite 

element equations under the interchange of the Xl and Xz coordinate directions, a 

new quadrature index Q ranging from 1 to 2 n is introduced. The new index Q is 
q 

equal to either q or q + n • 
q 

The arrays of strain approximation function values 

(with the Q index as the last index in the FORTRAN implementation) are stored such 

that the index Q for retrieval may range from 1 to n or from n + 1 to Z n. This 
q q q 

is achieved through the use of an ordering such as the following: 

Dl · , D2 · , Dl · ; ,1,q ,1,q ,1,q a l i ., a 2 i ' a l · ; "q "q ,1,q 
etc. (33) 

such that if the array Dl,i,Q is referenced with index Q in the range 1 to nq , then 

one retrieves Dl i as expected, but if the array Dl i is referenced with index 
, , q , ,Q 

Q in the range n + 1 to Z n , what is retrieved is the corresponding value of q q 
DZ,i,q. Similarly, the appropriate value of Dl,i,q is retrieved if DZ,i,Q is 

referenced with index Q in the range n + 1 to 2 n. This scheme is used to reduce 
q q 

the amount of FORTRAN code and the amount of debugging effort. 

Since the present implementation is for linearly elastic materials only, the 

shell stiffnesses (the C's, F's and D's) occur linearly in the stiffness 

coefficients. Thus it is convenient, in the interests of producing efficient code, 

to evaluate arrays of coefficients w C each of whose entries consist of a 
_ q t..~ 

shell stiffness CA~ multiplied by a weight wq • The weight wq ' in turn, is the 

product of a quadrature weight times two Jacobians. The first Jacobian comes from 

the transformation from local finite element coordinates to the surface coordinates 

Xl' XZ; and the second one, whose value is Al A
2

, comes from the transformation 
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from Xl' X2 to the Cartesian coordinates xl' x2 ' x3 · For the computation of the F 

and G arrays these arrays of coefficients are stored redundantly as in equation 

(33) so that again the index Q may range either from 1 to n or from n + 1 to 2 n . q q q 
Switching ranges of the index Q results in the transformation 

C
ll 
~ e22 

C
16 

+-+- C26 (34) 
F 11 +-+- F22 

F16 ~ F26 

I 1J Elements of the array a are generated in the course of evaluating the K
iJ

. 
A,i,q IJK 

and are saved for use in the evaluation of the F
ijk

• 

Generation of the Elemental Characteristic Arrays 

The elemental linear stiffness array [K] may be represented in the form 

(I,J 1 -+ 5; i,j 1 -+ 16) 

where 

The components of [K] are generated and stored as 15 blocks of data corresponding 

to the subarrays 

[KIll, £k22] , [K33] , [K44] , [K55 ] , [K2l] , [K3l] , [K32] , 

[K4l] , [K42] , [K43 ] , [K5l ] , [K52 ] , [K53 ] , [K54] 

The five diagonal blocks represent symmetric arrays and consequently contain 

(16·l7)/2! = 136 components e~ch. The ten off-diagonal blocks are stored in full 

and contain 162 = 256 components each. A partition such as [K12] is merely the 
21 transpose of [K ] and thus is neither separately evaluated nor stored. There is 

no problem keeping the 3240 independent components of [K] in memory at one time. 

16 
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where 

The elemental stiffness array [F] may be represented in the form 

IJK 
F, 'k 1.J 

(I,J,K 1+5; i,j,k 

F
JKI = FKIJ = FJIK = FKJI = FIKJ 
jki kij jik kji ikj 

1 + 16) 

Because the nonlinear parts of the strains are independent of ¢l and ¢2 (see eqs. 
IJK (5) and (6», it follows that any component of Fijk with any two of the I, J or K 

equal to 4 or 5 must be zero. Consequently, the independent blocks of [F] are 

[FIll], [F222 ], [F333], 

[F211] , [F122 ], [F311], [F133 ] , [F322], [F233 ], 

[F411] , [F422 ], [FS11 ] , [FS22], [F433 ], [FS33 ], 

[F
32l

], [F42l ], [FS2l], [F43l], [FS3l], [F
432

], [FS32 ] 

, 111 222 333 . 
The three d1.agonal blocks [F ], [F ] and [F ] each have l6'17-l8/3! 

(38) 

(39) 

(40) 

816 independent components, and the three are kept together in memory. The 12 . 

semidiagonal blocks each have l6-(16'17/2!) = 2176 independent components, and only 

two such blocks are kept in memory simultaneously. Finally, the seven offdiagonal 
3 blocks each have 16 = 4096 components, and only one is kept in memory at a time. 

Thus the 57232 independent components of the elemental F array are stored on disk 

in 14 separate records, and no more than 4352 entries are in memory at anyone 

time. 

The elemental stiffness array [G] may be represented in the form 

where 

IJKL Gijkl 

IJKL = GJIKL = 
Gijkl jikl etc. 

(I,J,K,L 1 + 5; i,j,k,l 1 + 16) 

Because of equations (5) and (6), the range of the upper indices is limited to 

1 + 3 rather than from 1 + 5. The independent subarrays of [G] are 

(41) 

(42) 
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[Gllll ] , [G
2222

], [G3333 ], 

[G
211l

], [G
1222

], [G
3lll

], [G
1333

], [G3222], [G2333 ], 
(43) 

[G2211], [G3311], [G3322], 

[G3211], [G3l22], [G2133 ] 

nn The diagonal subarrays of the form [G ] have l6'17'18-l9/4! = 3876 independent 

components each; the subarrays of the form [GIJJJ ] (I # J) each have 16'(16'17-

l8/3!) = 13056 components; the subarrays of the form [GIIJJ ] (I > J) each have (16' 

l7/2!)2 = 18496; 

l6 2 '(16'17/2!) = 

IJKK and finally, the subarrays [G ] (I > J F K ~ I) each have 

34816 components. Apart from the three diagonal subarrays, the 

sizes of the G subarrays are too large to keep whole subarrays in memory at anyone 

time. The program stores the 249,900 components of the elemental G array in 66 

records and holds no more than 4352 in memory at anyone time. If the full G array 

were to be stored, it would occupy more than 21 times as much memory as is used by 

the scheme implemented. 

The strain approximation functions (eq. (20» and the elemental stiffness 

arrays (eq. (29» are never evaluated more than once for a given element during the 

course of a computer run. This approach results in the stot'age on disk of more 

than 300,000 coefficients for each "distinct" finite element. While this number is 

large, the same coefficients are used many times in the course of developing the 

response of the tire to varying loads. Fortunately, in laying out the nodal points 

of the tire shell, the same geometry may be used for several elements. Thus the 

number of distinct elements may be considerably fewer than the total number of 

finite elements. 

~ of the Elemental Characteristic Arrays 

The elemental characteristic arrays are used for generating the coefficients 

of the Newton-Raphson equations (32), for generating the basis vectors and the 

coefficients of the reduced system of equations [see refs. 3 through 6], and in the 

postprocessing phase for evaluating the various contributions to the total strain 
IJ IJK energy. These applications require evaluation of the products of K
ij

, F
ijk 

and 

IJKL Xl '1 ··1 ···1 
Gijkl with the solution vector i and its derivatives Xi' Xi' Xi' etc. with respect 
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to some specified parameter which varies along the solution path. The subroutines 

which evaluate these products are considerably complicated by the fact that 

only the independent components of the characteristic arrays are stored. This is 

especially true for the subroutine which generates the array 

GXIJK IJKL L 
ijk = Gijkl Xl (44) 

because neither the whole of G nor the whole of GX can be kept in memory. 

this complication is more than offset by the storage reduction it allows. 

SAMPLE PROBLEMS 

However, 

Two sample problems are considered in this report. The first is a thin-walled 

isotropic torus under uniform interior or exterior pressure (previously analyzed 

with a fixed external pressure in ref. 8). The second is a laminated toroid with 

elliptical cross section having two clamped edges corresponding to the beads of a 

tire. The toroid is pressurized from within.' Both problems have axially symmetric 

loads even though the computer code is designed for general load distributions. 

Symmetries 

The presence of symmetric configurations in the sample problems allows a very 

sizeable reduction in the number of degrees of freedom needed to achieve the 

desired levels of accuracy. Because of the axial symmetry of both the undeformed 

shell and the loads, the solutions are expected to be axially symmetric at least 

for the cases of internal pressure or moderate external pressure. Consequently, a 

single strip of finite elements is employed to cover the range of azimuthal angles 

and the circumferential angle in each element ranges from 0 to 2TI. The total 

number of degrees of freedom is further reduced by letting all nodes with the same 

azimuthal angle be constrained to have the same displacements. 

In addition to axial symmetry, both problems exhibit symmetry under rotations 

by 1800 about a set of axes normal to the main axis (i.e., the axis of axial 

symmetry). As a consequence, the generalized displacement functions u
l

' u
2

, ¢l and 

¢2 all change sign under reflection in a plane normal to the main axis, while the 

normal displacement w is left invariant under such a reflection. It follows that 
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by imposing the appropriate boundary conditions it is necessary to model only one 

side of the shells. It may also be noted that for isotropic materials the 

functions u2 and ~2 must be invariant under the reflection referred to above. 

Consequently, it follows that u2 = 0 and ~ = 0, and the number of degrees of 

freedom is even further reduced. 

First Sample Problem 

The geometry of the torus in the first sample problem is shown in Fig. 2. The 

torus has cross-sectional radius a, toroidal radius b, thickness h and material 

properties typical of an aluminum alloy. There are no boundary constraints other 

than those which rule out the rigid body motions. The deformation for a uniform 

external pressure p = -0.6895 106 N/m2 (100 psi) is shown in Fig. 3. In that figure 

the middle surface of the undeformed shell is represented by the circle and the 

short lines indicate the displacements of representative material points on the 

reference surface. The displacements have been multiplied by a factor of hundred. 

Because of the material isotropy, u
2 

and ~2 are zero and the displacements are all 

in the plane of the cross section. The variation of the normal displacement w with 

Xl is shown in Fig. 4 for the same external pressure. The results are in close 

agreement with the results reported in ref. 8. The inner diameter remains nearly 

unchanged. The normal displacement of a series of points in the middle surface of 

the shell is shown as a function of pressure in Fig. 5. The shell appears to 

collapse at an external pressure of approximately 1.04 106 N/m2 (150 psi). Because 

for large external pressures there are several distinct maxima and minima in the 

displacement components as functions of azimuthat angle, it is necessary to use 

several finite elements to get good accuracy. Twelve elements were used for the 

data presented in Fig. 3, and sixteen in Fig. 4. For an external pressure of 

0.6985 106 N/m2 (100 psi) values of the normal displacement at Xl = 0 (near the 

point of maximum displacement) and at Xl = n/2 (the outside diameter) are shown in 

Table 1 as a function of the number of elements in the half toroid. Far fewer 

elements are needed to get comparable accuracy for the case of internal pressure. 

Second Sample Problem 

The geometry of the toroid in the second sample problem is shown in Fig. 6. 

The toroid has an elliptical cross section with semimajor axis a and eccentricity 
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e. The toroidal radius is b and the thickness is h. The shell is clamped along 

two parallel circles a distance c apart. The shell consists of ten layers of 

fibrous material with orientation angles alternately 45 0 and _45 0 with respect to 

the circumferential direction. The material properties are chosen to correspond 

roughly to those of the cords of an aircraft tire. The displacements in the plane 

of the cross section caused by a uniform internal pressure p = 2.413 106 N/m
2 (350 

psi) is shown in Fig. 7. The middle surface of the unpressurized shell is 

represented by the inner (elliptical) curve, and the middle surface of the 

pressurized shell is represented by the outer curve. The short lines connect 

material points in the unpressurized and pressurized configurations. The 

displacements are not magnified. The displacements in the circumferential 

direction are nonzero but not shown here. 

CONCLUDING REMARKS 

A computer program has been constructed for static analysis of geometrically

nonlinear deep laminated shells of revolution. The program performs well for the 

sample problems to which it has been applied and appears to provide a good 

foundation for future tire analysis work. Future research in this area should 

address such subjects as configuration dependent loading, tire contact loads, large 

shell rotations, more general shell geometries to simulate actual tire cross 

sections, and more realistic tire material properties including the nonhomogeneous 

aspects of tire construction. 
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Table 1. Values of normal displacement w for the shell of Fig. 2 for varying 

number of finite elements modeling the half torus. Displacements are shown for 

X = 0 and TI/2 radians. Pressure = -0.6895 106 N/m
2 (100 psi). 

1 

number of number of Wo wTI/2 elements d. o. f. 

4 65 -0.021483 -0.0065057 

8 125 -0.026082 -0.0065973 

12 185 -0.029227 -0.0066134 

16 245 -0.029784 -0.0066225 
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Figure 2. Geometry of toroidal shell with circular cross section. 
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Figure 3. Deformation of middle surface torus of Fig. 2 due to uniform 
6 2 external pressure p = -0.6895 10 N/m (100 psi). Displacements shown are 100 

times the actual displacements. Twelve finite elements. 
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Figure 7. Deformation (in the plane of the cross section) of the toroidal 

shell shown in Fig. 5 due to uniform internal pressure p = 2.413 106 N/m2 (350 

psi). Displacements are shown true to scale. 
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