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SUMMARY

A study is made of the free vibrations of laminated anisotropic elliptic
plates with clamped edges. The analytical formulation is based on a Mindlin-
Reissner type plate theory with the effects of transverse shear deformation,
rotary inertia, and bending-extensional coupling included. The frequencies
and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunc-
tion with Hamilton's principle. A computerized symbolic integration approach
is used to develop analytic expressions for the stiffness and mass coefficients
and is shown to be particularly useful in evaluating the derivatives of the
eigenvalues with respect to certain geometric. and material parameters.
Numerical results are presented for the case of angle~ply composite plates
with skew-symmetric lamination.

INTRODUCTION

Although a number of studies have been devoted to the free-vibration
analysis of isotropic elliptic plates (refs. 1 to 4), investigations of
orthotropic plates are rather limited in extent (refs. 5 and 6), and to the
authors' knowledge, no publications exist dealing with.the free vibration of
laminated anisotropic elliptic plates. The present study focuses on this
problem. More specifically, the objectives of this paper are (1) to present
a computational procedure based on the use of computerized symbolic integration
in conjunction with the Rayleigh-Ritz technique for the free-vibration analysis
of laminated anisotropic elliptic plates and (2) to study the effect of vari-
ations in the lamination and geometric parameters of the plate on its
vibration characteristics.

The analytical formulation is based on a form of the Mindlin~Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
The frequencies and mode shapes are obtained by using the Rayleigh-Ritz
technique in conjunction with Hamilton's principle. The stiffness and mass
coefficients are developed using the symbolic and algebraic manipulation
language MACSYMA (refs. 7 and 8). Computerized algebraic manipulation, in
addition to reducing the tedium of the analysis and the likelihood of errors,
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was shown to be particularly useful in evaluating the derivatives of the
eigenvalues with respect to certain geometric and material parameters. Otherxr
applications of computerized algebraic manipulation in structural mechanics
are reported in references 9 and 10.
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SYMBOLS

semimajor and semiminor axes of elliptic plate

extensional and transverse shear stiffnesses of plate,
respectively

bending stiffnesses of plate

elastic moduli in direction of fibers and normal to fibers,
respectively

stiffness interaction coefficients of plate.

shear moduli in plane of fibers and normal to plane of
fibers, respectively

plate thickness

element stiffness matrix

stiffness coefficients

mass matrix

mass coefficients

density parameters of plate

kinetic energy of plate

strain energy of plate

displacement components in coordinate directions
fiber orientation angle of individual layers

Poisson's ratio measuring strain in T-direction due to
uniaxial normal stress in the L-direction

functional defined in equation (1)

material density of the plate



¢ rotation components

o

{v} vector of undetermined parameters

wi ith component of vector {y}

2 plate domain

w circular frequency of vibration of the plate
_ 3

au Todx

o

MATHEMATICAL FORMULATION

The analytical formulation is based on a form of the Mindlin-Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
A displacement formulation is used with the fundamental unknowns consisting
of the displacement and rotation components of the middle plane of the plate
Uy, W, and ¢5. (See fig. 1 for sign convention.) Throughout this paper, the
range of the Greek indices is 1,2 and a term in which any Greek index appears
twice is to be summed over that index. The fundamental unknowns are assumed
to have a sinusoidal variation in time with angular velocity w (the circular
frequency of vibration of the plate). The functional used in the development
of the stiffness and mass matrices is given by

H(ua,w,¢u) =T - U (1)
where
U=lf[c du,du +2F .. du, 3¢
2 aByp o B "y p aByp o B Y'p
+ D 9 ! 2
afyp a¢8 Y¢p (2)
+ ca363 (aaw 38W + 2?& BBW + ¢G¢B)] lelyi
T=£w2fm(uu +ww)-l:2mu¢ +m. ¢ ¢ daq (3)
2 o oa 1l oa'a 200
In equations (2) and (3), CGBYO' DaByp’ and FaByp are extensional stiff-

nesses, bending stiffnesses, and stiffness interaction coefficients of the
plate; Ca383 are transverse shear stiffnesses of the plate; mb, ml, and
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my are density parameters of the plate; § is the plate domain; and
]

aa = ax
o

The displacement and rotation components are approximated by expressions
of the form

u
[+
w

¢

o

[N] {y} (4)

where [N] is a matrix of a priori chosen approximation functions and {¢}
is a vector of undetermined coefficients. In the present study the functions
in the matrix [N] are chosen to be polynomials in Xy and X,

The stiffness and mass matrices of the plate are obtained by first
replacing the generalized displacements in equations (2) and (3) by their
expressions in terms of the approximation functions and then applying the
stationary condition of the functional I, namely,

I =0 (5)

If the undetermined coefficients {Y} are varied independently and simultan-
eously, one obtains the following set of equations for the plate:

(k1 {¢} = w2 [MI{y} (6)

where [K] and [M] are the stiffness and mass matrices of the plate, res-
pectively. The matrix [K] is symmetric and positive definite and the
matrix [M] is symmetric. The eigenvalues and eigenvectors are obtained
by using the technigue described in reference 1l1.

EVALUATION OF STIFFNESS AND MASS COEFFICIENTS

The stiffness and mass coefficients were evaluated using the computerized
symbolic and algebraic manipulation system MACSYMA. The MACSYMA program used
in evaluating these coefficients is given in the appendix. The major tasks
performed on MACSYMA are

(1) Selecting approximation functions for each of the fundamental
unknowns with undetermined coefficients {Jy} in equation (4) and developing
analytic expressions for the strain and kinetic energies as quadratic
functions in {y}

(2) Specifying a pattern-matching technique for evaluating the integrals
over the elliptic domain (using the function INT(F) (see appendix))
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(3) Forming the stiffness and mass coefficients as second derivatives
of the strain and kinetic energies with respect to the undetermined coef-
ficients as

2 2
3°U w2M 37T (7)

o ————— = ——————ie——

X.. s
ij B?i Bwj ij Bwi Bwj

In view of the symmetry of K;. and Mijr only the upper triangular portions
are formed in a machine readable (LISP) format. These are subsequently
converted using the MACSYMA system to a form which closely resembles FORTRAN
code (the MACSYMA program used in the conversion is not included in the
appendix). Finally, a TECO program (DEC's editor for PDP-10 computers) is
executed to produce the final code.

The aforementioned computerized algebraic manipulation approach signifi-
cantly reduced the tedium of the analysis and the likelihood of errors.
Moreover, since analytic exact expressions are obtained for both the stiffness
and mass coefficients, the derivatives of the eigenvalues with respect to any
of the material or geometric parameters can be readily computed by using the
following formula (ref. 12}:

a(wiz)_{}'r[gg 2 9_@]'{} , 8
5a - Wi l3al T % {ma)| Yo &)

where d refers to any of the material or geometric parameters of the plate and
subscript i refers to the ith eigenvalue and eigenvector. In equation (8),
the eigenvectors are assumed to be [M] orthonormal, i.e.,

W M Gl =1 (9)

The two matrices [QK] and [gM] can be easily evaluated using the MACSYMA

system. od 3d

Equation (8) shows that the derivatives of the eigenvalues with respect
to any of the geometric and material parameters of the plate can be calculated
with little extra work. These derivatives can be used to obtain an approxi-
mate estimate for the eigenvalues corresponding to a modified (new) value
of the parameters without having to resolve the eigenvalue proplem,
equation (6). To accomplish this, a first-order Taylor's series expansion
of -the eigenvalues in terms of the problem parameter is used (see ref. 12)

2
B(Mi)
od

2 2
(w;) = 0y + (d* - a) (10)

where an asterisk refers to a modified (new) wvalue.
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NUMERICAL STUDIES

Numerical studies were conducted to investigate the effects of variations
in the plate geometry and lamination parameters on the vibration characteris-
tics of elliptic plates with clamped edges. Angle-ply laminates having
antisymmetric lamination with respect to the middle plane are considered.

The material characteristics of the individual layers were taken to be those
typical of high-modulus graphite~epoxy composites, namely,

EL/ET=4O GLT/ET=O.6 GTT/ET=O.5 VLT=O.25

where subscript L refers to the direction of the fibers, subscript T refers

to the transverse direction, and vpp is the major Poisson's ratio. The fiber
orientation was taken to be +6/-6/+6/-8/..., (0<8<45). All numerical studies
were obtained using the Rayleigh-Ritz technique with 10-term approximation
functions for each of the fundamental unknowns. The special symmetries ex-
hibited by the free-vibration modes of antisymmetric laminates were utilized
in the analysis (see refs. 13 and 14). The four combinations of symmetry and
antisymmetry with respect to the xj- and x2—axis have been considered. Typical
results are presented in figures 2 to 4 showing the effects of variations in
each of the following parameters on the vibration frequencies: (1) the aspect
ratio of the plate aj/az, (2) the number of layers of the plate NL, and

(3) the fiber orientation angle 6 of the individual layers.

Figure 2 shows that for elliptic plates having the same h/a,, the fre-
quencies of free vibration decrease with the increase in the aspect ratio
ai/az. The differences between the frequency curves for thick and thin
plates in figure 2 are mainly attributed to transverse shear deformation. As
expected, these differences are more pronounced for the higher modes. Figure
3 shows that the frequencies increase rapidly as the number of layers increases
from 2 to 4. Further increase in the number of lagers does not have signifi-
cant effect on the lower frequencies. Figure 4 shows that the minimum
frequency associated with each of the four basic symmetric-antisymmetric modes
increases with the increase in the fiber orientation angle 6 from 5° to 45°.
This is not true, in general, for the higher modes.

CONCLUDING REMARKS

The free-vibration response of anisotropic plates with clamped edges is
studied. The analytical formulation is based on Mindlin-Reissner tYpe ’
theory with the effects of transverse shear deformation, rotary inertia, and
bending-extensional coupling included. The frequencies and mode shapes are
obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's
principle. A computerized symbolic integration approach is used to develop
analytic exact expressions for the stiffness and mass coefficients and is
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shown to be particularly useful for evaluating the derivatives of the eigen-
values with respect to certain geometric and material parameters. Numerical
results are presented showing the effects of variation in the geometric and
material parameters on the free-vibration response of composite elliptic
plates with clamped edges.
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Figure 1l.- Elliptic plate and sign convention.
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Figure 2.- Effect of a1/a2 on the frequencies of clamped elliptic

plates with antisymmetric lamination.
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Figure 3.~ Effect of number of
layers on the frequencies of
clamped elliptic plates with
antisymmetric lamination.
h/as = 0.01; ay/ay, = 1.5;
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Figure 4.- Effect of fiber orien-

tation O on the frequencies of
clamped elliptic plates with
antisymmetric lamination. Eight-
layered plates; h/a, = 0.01;
aj/ay = 1,5; fiber orientation
67-070/-6/67-0/6/-6.



