11 research outputs found

    Spontaneous ischaemic stroke lesions in a dog brain: neuropathological characterisation and comparison to human ischaemic stroke

    Get PDF
    Abstract Background Dogs develop spontaneous ischaemic stroke with a clinical picture closely resembling human ischaemic stroke patients. Animal stroke models have been developed, but it has proved difficult to translate results obtained from such models into successful therapeutic strategies in human stroke patients. In order to face this apparent translational gap within stroke research, dogs with ischaemic stroke constitute an opportunity to study the neuropathology of ischaemic stroke in an animal species. Case presentation A 7\ua0years and 8\ua0months old female neutered Rottweiler dog suffered a middle cerebral artery infarct and was euthanized 3\ua0days after onset of neurological signs. The brain was subjected to histopathology and immunohistochemistry. Neuropathological changes were characterised by a pan-necrotic infarct surrounded by peri-infarct injured neurons and reactive microglia/macrophages and astrocytes. Conclusions The neuropathological changes reported in the present study were similar to findings in human patients with ischaemic stroke. The dog with spontaneous ischaemic stroke is of interest as a complementary spontaneous animal model for further neuropathological studies

    Poly-I:C Decreases Dendritic Cell Viability Independent of PKR Activation

    No full text
    Vaccination with tumor-antigen pulsed, monocyte-derived dendritic cells (DCs) has emerged as a promising strategy in cancer immunotherapy. The standard DC maturation cocktail consists of a combination of tumor necrosis factor-α (TNF-α)/interleukin (IL)-1β/IL-6 and prostaglandin E2 (PGE2) for generation of standard DCs (sDCs). In order to im-prove IL-12p70 production and cytotoxic T-lymphocyte (CTL) induction, a novel cocktail composed of TNF-α/IL-1β/ interferon (IFN)-α/IFN-γ and polyinosinic:polycytidylic acid (Poly-I:C) has been introduced to generate so-called α-Type-1 polarized DCs (αDC1s). We and others have previously performed a comprehensive comparison of sDCs and αDC1s. Here we demonstrate that the viability of αDC1s is lowered compared to sDCs and that DC apoptosis is medi-ated by Poly-I:C. We speculated that activation of protein kinase R (PKR) could mediate the observed apoptosis, but despite significantly higher PKR expression in αDC1s compared to sDCs and induction of active threonine (Thr)446 autophosphorylation of PKR in αDC1s, Poly-I:C did not influence total PKR expression or autophosporylation, indi-cating PKR-independent Poly-I:C-induced DC apoptosis
    corecore