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CASE REPORT

Spontaneous ischaemic stroke 
lesions in a dog brain: neuropathological 
characterisation and comparison to human 
ischaemic stroke
Barbara Blicher Thomsen1, Hanne Gredal1, Martin Wirenfeldt2, Bjarne Winther Kristensen2, 
Bettina Hjelm Clausen3, Anders Elm Larsen3, Bente Finsen3, Mette Berendt1*† and Kate Lykke Lambertsen3,4,5†

Abstract 

Background: Dogs develop spontaneous ischaemic stroke with a clinical picture closely resembling human 
ischaemic stroke patients. Animal stroke models have been developed, but it has proved difficult to translate results 
obtained from such models into successful therapeutic strategies in human stroke patients. In order to face this 
apparent translational gap within stroke research, dogs with ischaemic stroke constitute an opportunity to study the 
neuropathology of ischaemic stroke in an animal species.

Case presentation: A 7 years and 8 months old female neutered Rottweiler dog suffered a middle cerebral artery 
infarct and was euthanized 3 days after onset of neurological signs. The brain was subjected to histopathology and 
immunohistochemistry. Neuropathological changes were characterised by a pan-necrotic infarct surrounded by peri-
infarct injured neurons and reactive microglia/macrophages and astrocytes.

Conclusions: The neuropathological changes reported in the present study were similar to findings in human 
patients with ischaemic stroke. The dog with spontaneous ischaemic stroke is of interest as a complementary sponta-
neous animal model for further neuropathological studies.

Keywords: Animal model, Astrocyte, Canine, Cerebral infarction, Cerebrovascular accident, Infarct, Microglia, Middle 
cerebral artery occlusion
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Background
Dogs suffer from spontaneous ischaemic stroke with 
neurological signs and magnetic resonance imaging 
(MRI) findings largely comparable to those of humans [1, 
2]. Like humans, dogs with ischaemic stroke display vari-
able neurological signs depending on the topography of 
the vascular occlusion and the size of the infarct [1, 3–5].

Experimental rodent models have provided extensive 
knowledge of the pathophysiological mechanisms of 

ischaemic stroke [6, 7]. It has, however, proved difficult 
to translate results obtained from such models into suc-
cessful therapeutic strategies in human stroke patients [8, 
9]. In order to face this apparent translational gap within 
stroke research, it has been proposed to search for alter-
native animal models comprising more aspects of the 
human disease [10].

Dogs resemble humans with regard to basic anatomy of 
a large-sized gyrencephalic brain, its vascularization and 
a high ratio of white compared to grey matter [11–13]. 
Furthermore, dogs age naturally and, as humans, they 
experience diseases of longevity such as cardiovascu-
lar disease and diabetes mellitus. They are also exposed 
to similar risk factors for ischaemic stroke, including 
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obesity, hypertension and environmental exposures such 
as pollution and passive smoking.

Histopathological reports of ischaemic stroke in dogs 
are sparse and studies including a detailed evaluation 
of morphological changes of neurons, microglia/mac-
rophages, and astrocytes in combination are still lacking 
[14–28]. In humans, neuroglia are recognized as central 
components of the pathophysiology of ischaemic stroke, 
and especially microglia have in recent years gained 
attention in basic research, as these cells can exert both 
beneficial and detrimental effects on neurons situated in 
peri-infarct lesions [7, 29–32].

The aim of the present study was to report histopatho-
logical findings with an emphasis on neuroglial reac-
tions in the infarct and adjacent (peri-infarct) areas in a 
canine brain with a spontaneously occurring middle cer-
ebral artery (MCA) infarct. The translational potential of 
canine ischaemic stroke as a spontaneous animal model 
of human ischaemic stroke is discussed.

Case presentation
A 7 years and 8 months old female neutered Rottweiler 
dog presented at the University Hospital for Compan-
ion Animals, University of Copenhagen, Denmark with 
an acute onset of left-sided non-ambulatory hemiparesis 
and left-sided hemineglect. Otherwise, physical exami-
nation was unremarkable and complete blood count, 
biochemistry, thromboelastography, urinalysis, and cer-
ebrospinal fluid analysis were normal. The dog had low 

levels of thyroxin (T4):  ≪  6.44  nmol/l (11.2–40.8) and 
free T4: ≪ 3.86 pmol/l (7.7–47.6) and increased levels of 
thyroid stimulating hormone (TSH): 0.62  ng/ml (0.00–
0.50) but showed no clinical signs of hypothyroidism. 
MRI findings were compatible with a spontaneous right-
sided MCA occlusion (Fig.  1). The dog was euthanized 
3  days after initial presentation at the owners’ request, 
and the brain was donated for post-mortem studies.

The brain of a 1 year and 7 months old healthy female 
mixed-breed dog, euthanized at the owner’s request and 
donated to the University Hospital for Companion Ani-
mals for teaching and research purposes, was used as a 
normal control for the development of immunohisto-
chemical (IHC) protocols and for control sections.

The use of the canine tissues was approved by the Local 
Administrative and Ethics Committee, Department of 
Veterinary Clinical and Animal Sciences, Faculty of 
Health and Medical Sciences, University of Copenhagen 
(Permission number 1 N/2013).

Processing of brain tissue
The brain of the ischaemic stroke case was collected 
within 2 h post-mortem. The brain was fixed by immer-
sion in 4% formaldehyde for 14  weeks and stored in 
0.15  M phosphate-buffered saline (PBS) with 30% 
sucrose and 0.1% sodium azide (pH 7.4) for 15  months 
at 4  °C. The brain was cut transversally into 19 slabs of 
5  mm thickness. Each individual brain slab was num-
bered and photographed with the rostral cut-surface 

Fig. 1 Magnetic resonance imaging of stroke-lesioned canine brain. Sequential magnetic resonance images of coronal sections at the level of the 
parietal and temporal lobe from a dog performed 2 days after onset of the ischaemic stroke. Direction of images: rostral to caudal. Images were 
obtained with a 0.2 T MRI (Vet-MR, Esaote). Upper row No signal changes are seen in T1 images. Middle row Hyperintense signals are seen in T2. Lower 
row Hyperintense signals are seen in FLAIR. Hyperintensity is reflecting parenchymal changes following the ischaemic infarct
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pointing upwards. Meninges were removed and the 
slabs were divided into smaller pieces in order to fit the 
vibratome equipment. Each piece was embedded in agar 
and further divided into 24 series of 70-μm thick, free-
floating sections on a vibratome (Leica VT1000 S, Leica 
Microsystems, Ballerup, Denmark). Sections were stored 
in de Olmos cryoprotectant solution containing polyvi-
nylpyrrolidone and sucrose diluted in a mixture of eth-
ylene glycol and PBS and stored at −12  °C until further 
processing.

Histochemical staining
Every 24th section was stained with a solution of 0.01% 
toluidine blue (TB) (Merck Millipore, Hellerup, Den-
mark) diluted in 0.08 M Na2HPO4∙2H2O and 0.07 M cit-
ric acid in distilled H2O [34], and a luxol fast blue (LFB) 
solution (Amplicon, Odense, Denmark) [35], respectively. 
Sections were rinsed overnight in tris-buffered saline 
(TBS) at pH 7.4 and then mounted on gelatine-coated 
glass-slides and air-dried. For TB staining, slides were 
placed in TB for 26  min and differentiation was subse-
quently performed in graded series of alcohol and cleared 
in xylene. For LFB staining, differentiation of the sections 
was started by placing the sections in series of graded 
alcohol, and sections were then placed in LFB solution 
overnight at 4  °C. Next day, differentiation was contin-
ued by placing the sections in 0.05% lithiumcarbonate for 
3 min and sections were counterstained using haematox-
ylin and eosin (HE). Coverslipping was performed using 
Depex mounting medium (VWR, Herlev, Denmark).

Immunohistochemistry
Every 24th section of the free-floating sections was 
selected for IHC detection of microglial Iba1 and glial 
fibrillary acidic protein (GFAP) in astrocytes. Rinsing 
and incubation procedures were performed at room 
temperature, unless otherwise stated. Sections were 
rinsed 2 × 30 min in 0.05 M TBS, pH 7.4, and then left 
overnight in the same solution at 4  °C. Demasking was 
performed by rinsing sections  2  ×  15  min in a tris-
EGTA buffer (TEG) followed by heat induced epitope 
retrieval by heating sections in TEG in a microwave oven 
(Moulinex Optimo Duo, Groupe SEB, Ballerup, Den-
mark) for 2 × 4 min at 800 W and 1 × 10 min at 480 W 
or until boiling. Sections were then rinsed 30 min in TBS 
followed by 3 × 25 min in TBS + 1% Triton X, preincu-
bated with 10% foetal calf serum (FCS) in TBS for 1  h 
and incubated for 3 days at 4 °C with one of the following 
primary antibodies: polyclonal rabbit anti-Iba1 (1:500, 
Wako-Chem, Osaka, Japan) or polyclonal rabbit anti-
GFAP (1:200, Dako, Glostrup, Denmark) diluted in 10% 
FCS in TBS. Next, sections were rinsed 3 ×  15  min in 
TBS, 30 min in TBS + 1% Triton-X, 15 min in TBS and 

blocked for endogenous peroxidase activity for 30  min 
in 100% methanol and 0.2% hydrogen peroxide. Rinsing 
was then performed 15  min in TBS and 2 ×  60  min in 
TBS +  1% Triton-X. Sections were then incubated with 
EnVision™ + System-HRP (Dako) overnight at 4 °C. Next, 
all sections were rinsed 3 ×  45  min in TBS and devel-
oped in 0.05% 3,3′-diaminobenzidine (DAB) and 0.033% 
hydrogen peroxide. Sections were then rinsed 2 × 30 min 
in TBS and 30 min in a tris-buffer. Finally, sections were 
mounted on gelatin-coated glass-slides, and when air-
dried, counterstained with TB diluted in tris-buffer to a 
3/4 solution for 16  min, dehydrated in graded alcohol, 
cleared in xylene and mounted with Depex (VWR).

Control for antibody specificity was performed on 
brain tissue sections of the control dog by substitut-
ing the primary antibody with rabbit IgG (Dako) and by 
omitting the primary antibody in the protocol. All sec-
tions were devoid of immunostaining.

Neuropathological examination
Gross examination of the ischaemic stroke brain imme-
diately upon removal from the skull revealed a soft and 
oedematous area with a diameter of approximately 
20 mm, which was visible on the surface of the right cere-
bral hemisphere in the lateral communication of the fron-
tal and parietal lobes. A detailed examination of the brain 
after fixation and sectioning into slabs revealed a swol-
len area protruding above the natural convex curve of 
the right frontal and parietal cerebral lobes with flattened 
gyri and narrowed sulci. This location corresponded to 
the affected area as visualized by MRI. The lesion meas-
ured, in medial–lateral direction up to 32  mm, in ven-
tral-dorsal direction up to 36  mm, and in rostro-caudal 
direction up to 35  mm. The lesion involved neocortical 
grey matter and centrum semiovale white matter in the 
caudal part of the right frontal lobe, the right parietal 
lobe, the lateral and superior part of the right temporal 
lobe, and the most caudal part of the right hippocam-
pus. The medial parts of the right frontal and parietal 
lobes towards the cerebral falx, including the cingulate 
gyrus, the medial parts of the superior frontal gyrus and 
the most medial aspects of the right temporal lobe, were 
spared. Likewise did the corpus callosum, basal nuclei, 
thalamus, brainstem, and cerebellum appear normal.

The lesion blurred the grey/white matter interface, 
caused a dusky discoloration of the grey matter, and had 
a cracking, friable appearance (Fig. 2a). A distinct bound-
ary between the lesion and the surrounding brain paren-
chyma was evident. The lesion core was predominantly 
bland. However, focal petechial haemorrhages were pre-
sent in the grey matter along several sulci (Fig. 2b) indi-
cating haemorrhage from reperfusion of damaged vessels 
and tissue, typically associated with embolic events. The 
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neocortex appeared focally detached from the underly-
ing white matter in a circumscribed pattern of cortical 
laminar necrosis (Fig. 2c). Cerebral oedema was manifest 
with a grainy, coarse appearance of the cut surface in the 
suspected ischaemic area of the affected slabs. An obvi-
ous midline shift towards the unaffected left hemisphere 
and subfalcine herniation with displacement of the right 
cingulate gyrus under the falx cerebri and compression 
of the cavity of the right lateral ventricle was present 
(Fig.  2d). The pathological changes in the brain paren-
chyma corresponded to an ischaemic lesion caused by 
cessation of blood flow in the vascular territory of the 
right MCA. No blood vessel thrombus or embolus was 
identified.

Histologically, the brain had normal architecture and 
normal grey and white matter structure. There were 
no signs of atherosclerosis. In the infarcted areas of the 
right hemisphere, there was loss of neurons and glial 
cells and commencement of liquefactive necrosis. Neu-
trophil granulocyte and macrophage infiltrations were 
present within the necrotic areas of the parenchyma in 

accordance with the three-day post lesion time frame 
(Fig. 3). Ischaemic neuronal injury (shrunken cell somas 
and pyknotic nuclei) and loss of neurons were signifi-
cantly more widespread than suggested by the size of 
the gross lesion (Fig.  4). Further morphological analysis 
of ischaemic neurons was limited due to the thickness 
and fragmentation of the vibratome sections. Immuno-
histochemical labeling for Iba1 revealed evident micro-
glial/macrophage reactivity around the ischaemic lesion 
(Fig.  5). Numerous round macrophage-like cells (subse-
quently referred to as ‘macrophages’) had accumulated at 
the margin of the lesion as well as in the adjacent degen-
erated ischaemic parenchyma. Microglia displayed reac-
tive microgliosis with various morphologies including 
the reactive macrophage phenotype in the vicinity of the 
lesion. Rod-shaped microglia were identified as well. A 
gradient of microglial reactivity was observed in the peri-
infarct zone commencing with lightly reactive microglia 
far from the lesion (Fig. 5). Closer to the infarct, micro-
glia appeared more reactive with hypertrophy and hyper-
ramification of processes and a bushy appearance. In the 

Fig. 2 Gross lesions in the canine brain with a right-sided middle cerebral artery infarct. a Swollen and flattened gyri with narrowed sulci (arrows). 
Poor demarcation of grey/white matter interface and a dusky discoloration of the grey matter (asterix). Transverse section at the level of the basal 
nuclei. b Focal petechial haemorrhages in the grey matter of several sulci (arrows). Transverse section at the level of the thalamus. c Focal detach-
ment of neocortex from underlying white matter (arrows). Transverse section at the level of the thalamus. d Narrowed and compressed right lateral 
ventricle (arrow). Subfalcine herniation with displacement of the right cingulate gyrus (asterix). Note the general grainy appearance of the neural 
tissue caused by oedema leading to asymmetry of the hemispheres and midline shift towards the left hemisphere. Transverse section at the level of 
the caudate nucleus. R right cerebral hemisphere. L left cerebral hemisphere
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contralateral hemisphere there was a circumscribed area 
of cortical microglial activation in the cerebral cortex 
demonstrating anterograde axonal (Wallerian) degen-
eration of commissural fibres from the right hemisphere 
cerebral cortex. Reactive astrocytosis was observed in the 
peri-infarct and characterised by increased GFAP expres-
sion (Fig. 6).

The frail texture of the infarcted areas of the right 
hemisphere resulted in fragmentation of the tissue when 
sectioned by the vibratome. The numerous fragments 
from each section made the exact anatomical location of 
the pathological changes within each section difficult to 
discern.

Conclusions
Neuropathological changes in the affected area of the 
dog brain corresponded well to what has previously been 
described for 3-day-old infarcts in humans [33, 34] and 
experimental murine models [35], and included the pres-
ence of injured neurons, reactive microgliosis and astro-
cytosis as well as neutrophil granulocyte and macrophage 
infiltrations in the peri-infarct area.

In the canine ischaemic stroke brain, reactive microglia 
were found in the peri-infarct. The pathological changes 
observed in the present study are similar to those in the 
murine permanent MCA occlusion experimental model 
[36, 37]. Microglia are known to monitor the microenvi-
ronment of the brain and to react instantly to injury by 
undergoing morphological and functional changes [37, 
38], thus neuronal death is suspected to induce transfor-
mation to phagocytic microglia with ameboid morphol-
ogy as observed closest to and in the necrotic tissue in 
the present study [39]. Following the dynamic role of 
microglia in relation to the formation of the ischaemic 
lesion, microglia are the subject of a growing research 
interest [40, 41].

Astrocytosis was demonstrated in the cortical peri-
infarct zone. Astrocytes function among other by main-
taining the vascular tone changes following neuronal 
activity, and are capable of both secreting and absorbing 
neural transmitters. Immediately following injury to the 
brain, reactive astrocytosis develops. While a negative 
effect of astrocytosis by increasing infarct size has been 
shown [42], astrocytes at the same time have the poten-
tial to decrease the detrimental excitotoxicity [43, 44]. It 
is further known, that astrocytes in damaged tissue can 
induce a microglial response [37]. Whether astrocytes 
are primarily beneficial in terms of recovery or only 

Fig. 3 Topographic overview of canine brain tissue selected for 
histopathological evaluation. a Brain slab divided for vibratome 
processing. Box Area of the infarct and adjacent neuroparenchyma. 
b–d Tissue in box stained toluidine blue. IF infarct. P-IF peri-infarct 
area. Arrow Neutrophil granulocyte. Bars b = 200 μm, c = 100 μm, 
d = 10 μm

Fig. 4 Photomicrographs showing the cortical peri-infarct zone 
in the dog brain. TB: toluidine blue. IF infarct. P-IF peri-infarct. Bars 
200 μm. Note the loss of neurons and glial cells in the infarct area
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exacerbate lesion progression is thus controversial [45]. 
Accordingly, this cell type should be further studied in 
animal models of ischaemic stroke, including the dog.

Neutrophil granulocytes were recognized based on 
nuclear morphology, which is a method that has previ-
ously proved reliable when evaluating TB stained sec-
tions [46]. In the present study, infiltration of neutrophil 
granulocytes into the necrotic centre of the canine brain 
parenchyma was observed (Fig. 3). This is in accordance 
with previous reports from experimental studies in rats 
and mice, which have shown that neutrophil migra-
tion into the parenchyma of a brain affected by ischae-
mic stroke peaks within the first 48 h [47, 48]. However, 
neutrophilic reactions following ischaemic stroke are 
not fully understood [49–52]. In humans, neutrophilic 
granulocytes are known to play a potentially harmful role 
with regard to infarct progression [53, 54]. Consequently, 
neutrophils in ischaemic stroke have been studied with 
the aim of developing novel treatments. Investigated 
potential targets include inhibiting activation, recruit-
ment, and transmigration of neutrophilic granulocytes 
[49]. In humans, the proportion of leukocytes made up 
of neutrophils in the peripheral blood is approximately 

50–70% [55]. In contrast, neutrophils in mice only con-
stitute around 8–24% of the peripheral blood leukocytes 
[56], while the dog, interestingly, has a peripheral blood 
composition highly similar to humans with neutrophils 
forming approximately 60–80% of the peripheral blood 
leukocytes [57]. It would therefore be of interest to inves-
tigate the relationship between neutrophils and blood–
brain barrier breakdown, haemorrhagic transformation, 
and the impact on final neurological outcome [49] in 
dogs with spontaneous ischaemic stroke.

When evaluating the dog as a potential spontane-
ous animal stroke model, it seems relevant whether the 
ischaemic stroke was caused by a local thrombus or by 
an embolus. In the present study, a thrombus or embo-
lus was neither identified at necropsy nor at histologi-
cal examination even though this was the suspected 
underlying cause. This might, however, be explained by 
the fact that embolus reduction in  vivo as well as post-
mortem in dogs usually takes place within a few hours 
[58]. In the present case, however, an embolus as the 
underlying cause of the infarct was strongly suspected 
due to the presence of petechial haemorrhages indicat-
ing haemorrhagic transformation, which is typically 

Fig. 5 Photomicrographs showing microglial/macrophage activation in the cortical peri-infarct zone in the dog brain. IF infarct. P-IF peri-infarct 
area. Sections labelled for Iba1. Arrows reactive microglia. Bars a = 200 μm, b = 100 μm, c = 30 μm, d = 20 μm. Note reactive microgliosis in the 
peri-infarct area
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seen with embolic infarcts in humans [59]. In humans, 
the majority of ischaemic stroke events are caused by 
thromboembolism [55]. Atherosclerosis, which is the 
most frequent type of vascular pathology associated with 
arterial thrombosis in humans, seems rare in dogs and is 
most often associated with diabetes mellitus or hypothy-
roidism [16, 58]. Even though the T4 and free T4 levels 

were low and TSH was increased in the dog reported 
here, there were no clinical signs of concurrent hypo-
thyroidism and no atherosclerosis was identified on his-
topathology. This further support the hypothesis of an 
embolus having caused the ischaemic stroke in the dog 
investigated.

The most common subtype of ischaemic stroke in 
humans is MCA territory infarcts [60], and the major-
ity of animal models therefore aim at mimicking this 
subtype [61]. MCA occlusion is also a common sub-
type of spontaneous stroke in dogs [2], and thus offers 
an interesting spontaneous animal stroke model. So far, 
experimental studies have provided a substantial insight 
into the pathophysiology of ischaemic stroke, but effec-
tive neuroprotective drugs in experimental studies have 
failed when tested in human patients. The translational 
gap may, in part, be a result of the animal models not 
being able to mimic the complexity of the human disease 
appropriately [62]. A benefit of studying the pathophysi-
ology of spontaneous stroke in dogs is that confound-
ing factors such as anesthesia and surgical trauma of 
experimental models are avoided. Further, the similari-
ties between the basic neuroanatomy of the canine and 
the human brain might explain the resemblance between 
the clinical disease observed in dogs and in humans with 
regard to associated neurological deficits and final out-
come [2].

Ischaemic stroke seems to be less common in dogs than 
in humans [63]. The reasons for this remain unclear, but 
possible explanations could be the presence of vascular 
anastomoses in the canine brain, the rare occurrence of 
atherosclerosis in dogs [64] and the rapid dissolution of 
clots in dogs [58]. The low incidence of ischaemic stroke 
in dogs poses a hindrance to a widespread use of the dog 
as a spontaneous animal model for human ischaemic 
stroke. However, as studies regarding drug development 
for ethical reasons cannot be carried out in dogs, dogs 
could never fully replace existing animal stroke models. 
Instead, important investigations of the pathophysiology 
of spontaneous ischaemic stroke in dogs may contribute 
to bridge the translational gap between human patients 
and experimental animal models.

Our results are based on investigations of a single dog 
brain and thus cannot stand alone. In future, they should 
be followed by larger comparative studies, preferably 
using a multicenter design, which can ensure a high num-
ber of brains and support evidence-based conclusions. 
It would be of interest to perform further neuropatho-
logical characterisation of the reactions of neurons and 
neuroglia at different post stroke time points and inves-
tigations of vascular pathology seem highly relevant. Fur-
thermore, white matter neuropathology has previously 

Fig. 6 Photomicrographs showing astrocytosis in the cortical 
peri-infarct zone in the dog brain. IF infarct. P-IF peri-infarct area. 
Sections labelled with a GFAP antibody. Bars a = 200 μm, b = 30 μm, 
c = 20 μm. Note the reactive astrocytosis
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been linked to clinical deficits in humans with ischaemic 
stroke [65]. It would therefore also be of interest to inves-
tigate such white matter lesions in dogs.
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