1,965 research outputs found
A Toll for lupus
Toll-like receptor (TLR)-9 recognizes CpG motifs in microbial DNA. TLR9 signalling stimulates innate antimicrobial immunity and modulates adaptive immune responses including autoimmunity against chromatin, e.g., in systemic lupus erythematosus (SLE). This review summarizes the available data for a role of TLR9 signalling in lupus and discusses the following questions that arise from these observations: 1) Is CpG-DNA/TLR9 interaction involved in infection-induced disease activity of lupus? 2) What are the risks of CpG motifs in vaccine adjuvants for lupus patients? 3) Is TLR9 signalling involved in the pathogenesis of lupus by recognizing self DNA
Identifying chemokines as therapeutic targets in renal disease: Lessons from antagonist studies and knockout mice
Chemokines, in concert with cytokines and adhesion molecules, play multiple roles in local and systemic immune responses. In the kidney, the temporal and spatial expression of chemokines correlates with local renal damage and accumulation of chemokine receptor-bearing leukocytes. Chemokines play important roles in leukocyte trafficking and blocking chemokines can effectively reduce renal leukocyte recruitment and subsequent renal damage. However, recent data indicate that blocking chemokine or chemokine receptor activity in renal disease may also exacerbate renal inflammation under certain conditions. An increasing amount of data indicates additional roles of chemokines in the regulation of innate and adaptive immune responses, which may adversively affect the outcome of interventional studies. This review summarizes available in vivo studies on the blockade of chemokines and chemokine receptors in kidney diseases, with a special focus on the therapeutic potential of anti-chemokine strategies, including potential side effects, in renal disease. Copyright (C) 2004 S. Karger AG, Basel
Kidney disease in lupus is not always 'lupus nephritis'
In lupus erythematosus, elevated serum creatinine levels and urinary abnormalities implicate a kidney disorder, which may not always be lupus nephritis as defined by the current classification of the International Society of Nephrology/Renal Pathology Society. The signs of renal dysfunction may be caused by lupusunrelated renal injury such as drug toxicity or infection or by lupus-associated mechanisms that are not part of the classification, such as minimal change nephrotic syndrome or thrombotic microangiopathy. The latter seems to complicate lupus nephritis more frequently than previously thought. An unbiased assessment of kidney disease in lupus requires a kidney (re-)biopsy to define the appropriate management
A quantitative assessment method for Ascaris eggs on hands.
The importance of hands in the transmission of soil transmitted helminths, especially Ascaris and Trichuris infections, is under-researched. This is partly because of the absence of a reliable method to quantify the number of eggs on hands. Therefore, the aim of this study was to develop a method to assess the number of Ascaris eggs on hands and determine the egg recovery rate of the method. Under laboratory conditions, hands were seeded with a known number of Ascaris eggs, air dried and washed in a plastic bag retaining the washing water, in order to determine recovery rates of eggs for four different detergents (cationic [benzethonium chloride 0.1% and cetylpyridinium chloride CPC 0.1%], anionic [7X 1% - quadrafos, glycol ether, and dioctyl sulfoccinate sodium salt] and non-ionic [Tween80 0.1% -polyethylene glycol sorbitan monooleate]) and two egg detection methods (McMaster technique and FLOTAC). A modified concentration McMaster technique showed the highest egg recovery rate from bags. Two of the four diluted detergents (benzethonium chloride 0.1% and 7X 1%) also showed a higher egg recovery rate and were then compared with de-ionized water for recovery of helminth eggs from hands. The highest recovery rate (95.6%) was achieved with a hand rinse performed with 7X 1%. Washing hands with de-ionized water resulted in an egg recovery rate of 82.7%. This washing method performed with a low concentration of detergent offers potential for quantitative investigation of contamination of hands with Ascaris eggs and of their role in human infection. Follow-up studies are needed that validate the hand washing method under field conditions, e.g. including people of different age, lower levels of contamination and various levels of hand cleanliness
Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis
Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
Pivotal Role of Toll-Like Receptors 2 and 4, Its Adaptor Molecule MyD88, and Inflammasome Complex in Experimental Tubule-Interstitial Nephritis
Tubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation. The aim of this study was to evaluate the roles of TLR-2 and -4, Myd88 and inflammasome complex in an experimental model of TIN. Here, we show that wild-type (WT) mice fed adenine-enriched food exhibited significant renal dysfunction and enhanced cellular infiltration accompanied by collagen deposition. They also presented higher gene and protein expression of pro-inflammatory cytokines. In contrast, TLR-2, -4, MyD88, ASC and Caspase-1 KO mice showed renoprotection associated with expression of inflammatory molecules at levels comparable to controls. Furthermore, treatment of WT animals with allopurinol, an XDH inhibitor, led to reduced levels of uric acid, oxidative stress, collagen deposition and a downregulation of the NF-kB signaling pathway. We concluded that MyD88 signaling and inflammasome participate in the development of TIN. Furthermore, inhibition of XDH seems to be a promising way to therapeutically target the developing inflammatory process
Toll-Like Receptor Signaling and SIGIRR in Renal Fibrosis upon Unilateral Ureteral Obstruction
Innate immune activation via IL-1R or Toll-like receptors (TLR) contibutes to acute kidney injury but its role in tissue remodeling during chronic kidney disease is unclear. SIGIRR is an inhibitor of TLR-induced cytokine and chemokine expression in intrarenal immune cells, therefore, we hypothesized that Sigirr-deficiency would aggravate postobstructive renal fibrosis. The expression of TLRs as well as endogenous TLR agonists increased within six days after UUO in obstructed compared to unobstructed kidneys while SIGIRR itself was downregulated by day 10. However, lack of SIGIRR did not affect the intrarenal mRNA expression of proinflammatory and profibrotic mediators as well as the numbers of intrarenal macrophages and T cells or morphometric markers of tubular atrophy and interstitial fibrosis. Because SIGIRR is known to block TLR/IL-1R signaling at the level of the intracellular adaptor molecule MyD88 UUO experiments were also performed in mice deficient for either MyD88, TLR2 or TLR9. After UUO there was no significant change of tubular interstitial damage and interstitial fibrosis in neither of these mice compared to wildtype counterparts. Additional in-vitro studies with CD90+ renal fibroblasts revealed that TLR agonists induce the expression of IL-6 and MCP-1/CCL2 but not of TGF-β, collagen-1α or smooth muscle actin. Together, postobstructive renal interstitial fibrosis and tubular atrophy develop independent of SIGIRR, TLR2, TLR9, and MyD88. These data argue against a significant role of these molecules in renal fibrosis
Needs assessment to strengthen capacity in water and sanitation research in Africa:experiences of the African SNOWS consortium
Despite its contribution to global disease burden, diarrhoeal disease is still a relatively neglected area for research funding, especially in low-income country settings. The SNOWS consortium (Scientists Networked for Outcomes from Water and Sanitation) is funded by the Wellcome Trust under an initiative to build the necessary research skills in Africa. This paper focuses on the research training needs of the consortium as identified during the first three years of the project
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1
- …