90 research outputs found

    Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium

    Full text link
    We present analytic results for the finite-frequency current noise and the nonequilibrium ac conductance for a Kondo quantum dot in presence of a magnetic field. Using the real-time renormalization group method, we determine the line shape close to resonances and show that while all resonances in the ac conductance are broadened by the transverse spin relaxation rate, the noise at finite field additionally involves the longitudinal rate as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical description of recent experimental data for the emission noise at zero magnetic field, and we propose the extension to finite field for which we present a detailed prediction.Comment: 21 pages, 13 figure

    Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis

    Full text link
    We study non-equilibrium current and occupation probabilities of a two-orbital quantum dot. The couplings to the leads are allowed to be asymmetric and orbital dependent as it is generically the case in transport experiments on molecules and nanowires. Starting from a two-orbital Anderson model, we perform a generalised Schrieffer-Wolff transformation to derive an effective Kondo model. This generates an orbital potential scattering contribution which is of the same order as the spin exchange interaction. In a first perturbative analysis we identify a regime of negative differential conductance and a cascade resonance in the presence of an external magnetic field, which both originate from the non-equilibrium occupation of the orbitals. We then study the logarithmic enhancement of these signatures by means of a renormalisation-group treatment. We find that the orbital potential scattering qualitatively changes the renormalisation of the spin exchange couplings and strongly affects the differential conductance for asymmetric couplings.Comment: 6 pages, 4 figures, revised version as publishe

    Weblogs in Higher Education - Why Do Students (Not) Blog?

    Get PDF
    Positive impacts on learning through blogging, such as active knowledge construction and reflective writing, have been reported. However, not many students use weblogs in informal contexts, even when appropriate facilities are offered by their universities. While motivations for blogging have been subject to empirical studies, little research has addressed the issue of why students choose not to blog. This paper presents an empirical study undertaken to gain insights into the decision making process of students when deciding whether to keep a blog or not. A better understanding of students' motivations for (not) blogging may help decision makers at universities in the process of selecting, introducing, and maintaining similar services. As informal learning gains increased recognition, results of this study can help to advance appropriate designs of informal learning contexts in Higher Education. The method of ethnographic decision tree modelling was applied in an empirical study conducted at the Vienna University of Technology, Austria. Since 2004, the university has been offering free weblog accounts for all students and staff members upon entering school, not bound to any course or exam. Qualitative, open interviews were held with 3 active bloggers, 3 former bloggers, and 3 non‑ bloggers to elicit their decision criteria. Decision tree models were developed out of the interviews. It turned out that the modelling worked best when splitting the decision process into two parts: one model representing decisions on whether to start a weblog at all, and a second model representing criteria on whether to continue with a weblog once it was set up. The models were tested for their validity through questionnaires developed out of the decision tree models. 30 questionnaires have been distributed to bloggers, former bloggers and non‑ bloggers. Results show that the main reasons for students not to keep a weblog include a preference for direct (online) communication, and concerns about the loss of privacy through blogging. Furthermore, the results indicate that intrinsic motivation factors keep students blogging, whereas stopping a weblog is mostly attributable to external factors

    Interaction flow method for many-fermion systems

    Full text link
    We propose an interaction flow scheme that sums up the perturbation expansion of many-particle systems by successively increasing the interaction strength. It combines the unbiasedness of renormalization group methods with the simplicity of straight-forward perturbation theory. Applying the scheme to fermions in one dimension and to the two-dimensional Hubbard model we find that at one-loop level and low temperatures there is ample agreement with previous one-loop renormalization group approaches. We furthermore present results for the momentum-dependence of spin, charge and pairing interactions in the two-dimensional Hubbard model.Comment: 14 pages, 14 figure

    Mechanism for large thermoelectric power in negative-U molecular quantum dots

    Full text link
    We investigate with the aid of numerical renormalization group techniques the thermoelectric properties of a molecular quantum dot described by the negative-U Anderson model. We show that the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation induced asymmetry in the spectral function close to the Fermi level. We show that this effect results in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems with Seebeck coefficients exceeding 50ÎĽV/K\mu V/K over a wide range of gate voltages.Comment: 4 pages, 4 figures; published versio

    Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages

    Get PDF
    Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage

    Soft Fermi Surfaces and Breakdown of Fermi Liquid Behavior

    Full text link
    Electron-electron interactions can induce Fermi surface deformations which break the point-group symmetry of the lattice structure of the system. In the vicinity of such a "Pomeranchuk instability" the Fermi surface is easily deformed by anisotropic perturbations, and exhibits enhanced collective fluctuations. We show that critical Fermi surface fluctuations near a d-wave Pomeranchuk instability in two dimensions lead to large anisotropic decay rates for single-particle excitations, which destroy Fermi liquid behavior over the whole surface except at the Brillouin zone diagonal.Comment: 12 pages, 2 figures, revised version as publishe

    A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots

    Full text link
    The functional renormalization group provides an efficient description of the interplay and competition of correlations on different energy scales in interacting Fermi systems. An exact hierarchy of flow equations yields the gradual evolution from a microscopic model Hamiltonian to the effective action as a function of a continuously decreasing energy cutoff. Practical implementations rely on suitable truncations of the hierarchy, which capture nonuniversal properties at higher energy scales in addition to the universal low-energy asymptotics. As a specific example we study transport properties through a single-level quantum dot coupled to Fermi liquid leads. In particular, we focus on the temperature T=0 gate voltage dependence of the linear conductance. A comparison with exact results shows that the functional renormalization group approach captures the broad resonance plateau as well as the emergence of the Kondo scale. It can be easily extended to more complex setups of quantum dots.Comment: contribution to Les Houches proceedings 2006, Springer styl

    Spectroscopic evidences of quantum critical charge fluctuations in cuprates

    Full text link
    We calculate the optical conductivity in a clean system of quasiparticles coupled to charge-ordering collective modes. The absorption induced by these modes may produce an anomalous frequency and temperature dependence of low-energy optical absorption in some cuprates. However, the coupling with lattice degrees of freedom introduces a non-universal energy scale leading to scaling violation in low-temperature optical conductivity.Comment: Proceedings of M2S 2006. To appear in Physica
    • …
    corecore