We study non-equilibrium current and occupation probabilities of a
two-orbital quantum dot. The couplings to the leads are allowed to be
asymmetric and orbital dependent as it is generically the case in transport
experiments on molecules and nanowires. Starting from a two-orbital Anderson
model, we perform a generalised Schrieffer-Wolff transformation to derive an
effective Kondo model. This generates an orbital potential scattering
contribution which is of the same order as the spin exchange interaction. In a
first perturbative analysis we identify a regime of negative differential
conductance and a cascade resonance in the presence of an external magnetic
field, which both originate from the non-equilibrium occupation of the
orbitals. We then study the logarithmic enhancement of these signatures by
means of a renormalisation-group treatment. We find that the orbital potential
scattering qualitatively changes the renormalisation of the spin exchange
couplings and strongly affects the differential conductance for asymmetric
couplings.Comment: 6 pages, 4 figures, revised version as publishe