15 research outputs found

    Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

    Get PDF
    We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wavelength of 10 μm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 μm to 13.5 μm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 μm are found to be from 1 AU to 10 AU. The 10 μm sizes of our sample stars correlate with the slope of the 10–25 μm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different geometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    Spatially resolved 4.7 ÎĽ\mum CO fundamental emission in two protoplanetary disks

    No full text
    We consider the propagation of electrical signals through nerve fibres. In these systems, it is well-known that the signal can only travel at appropriate speeds if the fibre is covered by a myelin coating. This coating admits regularly spaced gaps at the so-called nodes of Ranvier. Since the signal travels much faster through the coated regions, it appears to hop between the nodes of Ranvier. However, many mathematical models that describe this propagation do not take into account the discrete structure directly.More recently, a discrete version of the famous FitzHugh-Nagumo model has been proposed to capture this discrete behaviour. In this thesis, we consider several extensions to and generalisations of this discrete FitzHugh-Nagumo model. In particular, we study infinite-range interactions, periodic behaviour and spatial-temporal discretization. Our general aim is to establish the existence and, sometimes, non-linear stability of travelling wave solutions. Our main tools in this analysis are the spectral convergence method and exponential dichotomies. In addition, we extend some general mathematical theory to systems with infinite-range interactions.</p
    corecore