68 research outputs found

    Effects of experience on the development of social behaviour of house-dwelling bats

    Get PDF
    This study aims at clarifying the mechanisms underlying the formation and maintenance of stable social units in bats (Chiroptera), a characteristic shared by most species of this group of mammals, by investigating the effects of the early social environment, i.e. pursuing the hypothesis that imprinting-like influences on the development of social behaviour exist and may have a profound impact on the social lives of bats. First I present an overview on bats' social behaviour and systems: these mammals comprise a high number of species and thus constitute an excellent group for testing general hypotheses about evolution and development of social behaviour. Bat social systems in fact range from solitary species to others aggregating in conspicuous groups of up to millions individuals. Such complexity leads to a variety of social behaviours rarely found in other taxonomic groups: there is increasing evidence that bats are able of cooperative social behaviours such as allogrooming, communal nursing, group hunting and social learning, all interactions that require high-level cognitive skills. Investigating such a complex system needs a multi-disciplinary approach, fundamental for disentangling the mechanisms through which bat sociality develops. I performed a series of experiments and used classical ethological and statistical methods (ethogram composition, general linear models) together with social network analysis (SNA), developing the analyses of social interactions on an individual-based approach. Experiment 1 deals with the ability of bats to modulate their behaviour (e.g. aggressiveness) according to intrinsic (e.g. age, sex) and extrinsic (familiarity) factors during a social interaction. I performed dyadic arena-encounters where two bats per test were allowed to freely interact. I recorded aggressive and affiliative behaviours and measured the degree of affiliation towards familiar and unfamiliar individuals of captive European free-tailed bats 9 (Tadarida teniotis). By testing individuals from different captive colonies and of different age, I measured the effects of familiarity, sex and age on the aggressive behaviour of this species, using aggressiveness as a proxy for xenophobia. I found significant effects of all the selected factors upon the degree of affiliation among individuals: familiar bats were more prone to perform affiliative behaviours, behaving xenophobically towards non-group members. This xenophobic attitude was lower in females and almost null towards juveniles. These results indicate that adult bats' behaviour is influenced by previous social experiences, also suggesting that social bonds formed inside colonies are long lasting regardless of genetic relatedness existing between individuals. With experiment 2 I investigate the mechanisms leading to the formation of social subunits in groups bats, using Pipistrellus kuhlii as a model species. By manipulating the early social environment of young bats and describing their pattern of association inside artificial roost as well as measuring their rates of interaction, I demonstrate that spatial proximity inside roosts promotes social cohesion. These associations are maintained by bats throughout adulthood by means of cooperative behaviours such as allogrooming and social thermoregulation. Both classical approach and social network analysis of interacting bats indicate that physical contacts and cooperative behaviours among bats inside a colony are non-random and are more frequently performed between individuals that already had contacts at a very young age. Following the same approach and techniques of Experiment 2, with Experiment 3 I test the hypothesis that the same mechanisms that produce group cohesion inside roosts can lead to the formation of multi-specific associations of bats. Such multi-specific groups are widespread among mammals, and in bats they are assumed to form due to eco-physiological reasons (i.e. species sharing micro-climatic requirements). I manipulated the early social environment of two species that naturally occur inside the same roosts; very young Kuhl's (P. kuhlii) and Savi's (Hypsugo savii) bats were exposed to artificial multi-specific social contacts in captivity. I demonstrate that early social experience does influence social bonding also beyond the species' boundaries. Independent young bats in fact selected previous groupmembers for social thermoregulation and reciprocal grooming, regardless of species membership. Results from all experiment clearly indicate a strong effect of early social environment on the interaction and association patterns in bats, both at short (Experiments 2-3) and long (Experiment 1) time scales, suggesting the existence of imprinting-like mechanisms. Such mechanisms lead to the formation of cryptic social subunits within bat colonies and probably enhance the cohesion of the entire social structure, with obvious and strong consequences on behavioural and ecological (e.g. demographic and epidemiological) scales

    A framework for prioritising present and potentially invasive mammal species for a national list

    Get PDF
    The European Union (EU) has recently adopted a regulation on invasive alien species that foresees the possibility of developing lists of species of National Concern. We developed a prioritisation process for alien mammals already established in Italy, but not yet included in the EU list (n = 6 species) and a systematic horizon-scanning procedure to obtain ranked lists for those species that are already introduced worldwide or traded in Italy (n = 213). Experts were asked to score these species, by evaluating their likelihood of establishment and spread and the magnitude of their potential impacts on biodiversity, economy, human-health and society. The manageability of each species was also evaluated, both for the proritisation and the horizon-scanning processes. We produced five lists that ranked species according to their potential spread and impacts and their manageability. These will allow policy-makers to select outputs according to a balance between risk assessment and risk management, establishing priorities for alien species management at the national level

    Sociality influences thermoregulation and roost switching in a forest bat using ephemeral roosts

    Get PDF
    In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest-roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost-switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment

    A species-level trait dataset of bats in Europe and beyond

    Get PDF
    Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBatrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBatrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. the dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.Additional co-authors: Lisette CantĂș-Salazar, Dina K. N. Dechmann, Tiphaine Devaux, Katrine Eldegard, Sasan Fereidouni, Joanna Furmankiewicz, Daniela Hamidovic, Davina L. Hill, Carlos Ibåñez, Jean-François Julien, Javier Juste, Peter Kaƈuch, Carmi Korine, Alexis Laforge, GaĂ«lle Legras, Camille Leroux, Grzegorz LesiƄski, LĂ©a Mariton, Julie Marmet, Vanessa A. Mata, Clare M. Mifsud, Victoria Nistreanu, Roberto Novella-Fernandez, Hugo Rebelo, Niamh Roche, Charlotte Roemer, Ireneusz RuczyƄski, Rune SĂžrĂ„s, Marcel Uhrin, Adriana Vella, Christian C. Voigt & Orly Razgou

    Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders

    Get PDF
    International audienceThe identification of research questions with high relevance for biodiversity conservation is an important step towards designing more effective policies and management actions, and to better allocate funding among alternative conservation options. However, the identification of priority questions may be influenced by regional differences in biodiversity threats and social contexts, and to variations in the perceptions and interests of different stakeholders. Here we describe the results of a prioritization exercise involving six types of stakeholders from the Mediterranean biome, which includes several biodiversity hotspots spread across five regions of the planet (Europe, Africa, North and South America, and Australia). We found great heterogeneity across regions and stakeholder types in the priority topics identified and disagreement among the priorities of research scientists and other stakeholders. However, governance, climate change, and public participation issues were key topics in most regions. We conclude that the identification of research priorities should be targeted in a way that integrates the spectrum of stakeholder interests, potential funding sources and regional needs, and that further development of interdisciplinary studies is required. The key questions identified here provide a basis to identify priorities for research funding aligned with biodiversity conservation needs in this biome

    Sensitivity of bats to urbanization: A review

    No full text
    In this article we review the current knowledge of the effects of urban expansion on bats and assess the potential of these mammals as bioindicators of urbanization. The response of bats to this process is highly species-specific: some species tolerate urban habitat or are even favoured by its roosting or foraging opportunities, others are affected by the loss or fragmentation of key natural habitat, or by the physical and chemical pollution associated with urbanization. Species responses generally translate into altered community structures, with few markedly dominating species. We propose different hypothetical models of bat fitness along an urbanization gradient and discuss why bat population density may not be an effective fitness proxy to assess the reactions of these mammals to urban expansion. We also suggest that urban habitat may act as an ecological trap even for apparently synurbic species. Overall, bat sensitivity to urbanization makes these mammals promising candidates to track the effects of this process of land use change on the biota, but more studies, specifically tailored to explore this role, are needed
    • 

    corecore