3,042 research outputs found

    On the D0D^0 -- DsD_s lifetime difference and τ7π+ντ\tau\to 7\pi + \nu_\tau decays

    Full text link
    In this paper we discuss some aspects of inclusive decays of charmed mesons and also decays of the τ\tau lepton into ντ+7π\nu_\tau + 7\pi. We find that phase space effects are likely to explain the observed lifetime ratio τ(Ds+)/τ(D0)\tau(D_s^+) / \tau(D^0) = 1.17. In particular one need not appeal to a large annihilation contribution in the inclusive D0D^0 decay which, being absent in Ds+D_s^+ decays could also contribute to the enhanced D0D^0 decay rate relative to that of the Ds+D_s^+. Examining a separate problem, we find that the rate for τντ+7π\tau\to \nu_\tau + 7\pi is almost completely dominated by the tiny phase space for the final eight particle state. Using an effective chiral Lagrangian to estimate the matrix element yields a branching ratio into the channel of interest far smaller than the present upper bound.Comment: No figure

    The Interplay Between Collider Searches For Supersymmetric Higgs Bosons and Direct Dark Matter Experiments

    Get PDF
    In this article, we explore the interplay between searches for supersymmetric particles and Higgs bosons at hadron colliders (the Tevatron and the LHC) and direct dark matter searches (such as CDMS, ZEPLIN, XENON, EDELWEISS, CRESST, WARP and others). We focus on collider searches for heavy MSSM Higgs bosons (AA, HH, H±H^{\pm}) and how the prospects for these searches are impacted by direct dark matter limits and vice versa. We find that the prospects of these two experimental programs are highly interrelated. A positive detection of AA, HH or H±H^{\pm} at the Tevatron would dramatically enhance the prospects for a near future direct discovery of neutralino dark matter. Similarly, a positive direct detection of neutralino dark matter would enhance the prospects of discovering heavy MSSM Higgs bosons at the Tevatron or the LHC. Combining the information obtained from both types of experimental searches will enable us to learn more about the nature of supersymmetry.Comment: 22 pages, 28 figure

    Exclusive semileptonic B decays to radially excited D mesons

    Full text link
    Exclusive semileptonic B decays to radially excited charmed mesons are investigated at the first order of the heavy quark expansion. The arising leading and subleading Isgur-Wise functions are calculated in the framework of the relativistic quark model. It is found that the 1/m_Q corrections play an important role and substantially modify results. An interesting interplay between different corrections is found. As a result the branching ratio for the B-> D'e\nu decay is essentially increased by 1/m_Q corrections, while the one for B-> D*'e\nu is only slightly influenced by them.Comment: 19 pages, revtex, 6 figures, uses rotating.st

    A Heavy-Light Chiral Quark Model

    Full text link
    We present a new chiral quark model for mesons involving a heavy and a light (anti-) quark. The model relates various combinations of a quark - meson coupling constant and loop integrals to physical quantities. Then, some quantities may be predicted and some used as input. The extension from other similar models is that the present model includes the lowest order gluon condensate of the order (300 MeV)^4 determined by the mass splitting of the 0^- and the 1^- heavy meson states. Within the model, we find a reasonable description of parameters such as the decay constants f_B and f_D, the Isgur-Wise function and the axial vector coupling g_A in chiral perturbation theory for light and heavy mesons.Comment: 31 pages, 13 figures, RevTex4.

    Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    Get PDF
    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.Comment: 13 pages, 7 figures, 3 table

    Remarks on Semileptonic B and D Decays into Orbitally Excited Mesons

    Get PDF
    We have obtained the differential decay rate and calculated the branching ratios of the exclusive semileptonic decays B(D)XlνB(D) \to Xl\nu, where XX is a p-wave meson, using the nonrelativistic ISGW quark model. Our results are compared with the predictions of the ISGW2 model. We have computed some branching ratios that were not reported or were reported with 0.00 in this model. For example, we find that Br(BcBs20ˉlνˉ)=4.03×105Br(B_c^- \to \bar{B_{s2}^{*0}}l^-\bar{\nu}) = 4.03 \times 10^{-5}, Br(BcB20ˉlνˉ)=3.65×106Br(B_c^- \to \bar{B_2^{*0}}l^- \bar{\nu}) =3.65 \times 10^{-6} and Br(Ds+f2l+ν)=2.7×105Br(D_s^+ \to f_2l^+\nu) = 2.7 \times 10^{-5}, which seems to be at the reach of forthcoming experiments. Furthermore, we have classified the Bu,d,sTlνB_{u,d,s} \to Tl\nu decays in two groups and compared the semileptonic and nonleptonic decays including a tensor meson in the final state.Comment: 11 pages, LaTe

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2D_2^*, D0D'_0, and D1D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    Precise measurement of hadronic tau-decays with an eta meson

    Full text link
    We have studied hadronic tau decay modes involving an eta meson using 490 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The following branching fractions have been measured: B(tau- -> K- eta nu)=(1.58 +- 0.05 +- 0.09)x 10^{-4}, B(tau- -> K- pi0 eta nu)=(4.6 +- 1.1 +- 0.4)x 10^{-5}, B(tau- -> pi- pi0 eta nu)=(1.35 +- 0.03 +- 0.07)x 10^{-3}, B(tau- -> pi- KS eta nu)=(4.4 +- 0.7 +- 0.2)x 10^{-5}, and B(tau- -> K^{*-} eta nu)=(1.34 +- 0.12 +- 0.09)x 10^{-4}. These results are substantially more precise than previous measurements. The new measurements are compared with theoretical calculations based on the CVC hypothesis or the chiral perturbation theory. We also set upper limits on branching fractions for tau decays into K- KS eta nu, pi- KS pi0 eta nu, K- eta eta nu, pi- eta eta nu and non-resonant K- pi^0 eta nu final states.Comment: 24 pages, 7 figure

    Probing for the Charm Content of BB and Υ\Upsilon Mesons

    Full text link
    A slow J/ψJ/\psi bump exists in the inclusive BJ/ψ+XB\to J/\psi + X spectrum, while the softness of J/ψJ/\psi spectrum in Υ(1S)J/ψ+X\Upsilon(1S) \to J/\psi + X decay is in strong contrast with expectations from color octet mechanism. We propose {\it intrinsic} charm as the explanation:the former is due to BˉJ/ψDπ\bar B\to J/\psi D \pi,with three charm quarks in the final state; the latter is just a small fraction of Υ(1S)(ccˉ)slow+2\Upsilon(1S) \to (c\bar c)_{\rm slow} + 2"jet" events, where the slow moving ccˉc\bar c system evolves into D()D^{(*)} pairs. Experimental search for these phenomena at B Factories and the Tevatron is strongly urged, as the implications go beyond QCD.Comment: 4 pages, REVTEX, 10 eps figures included. Major revision with more discussions on the rescattering background, and a reappraisal of the Upsilon(1S) decay in the presence of intrinsic charm, leading to a change in Titl

    Lifetime Differences, direct CP Violation and Partial Widths in D0 Meson Decays to K+K- and pi+pi-

    Full text link
    We describe several measurements using the decays D0->K+K- and pi+pi-. We find the ratio of partial widths, Gamma(D0->K+K-)/Gamma(D0->pi+pi-), to be 2.96+/-0.16+/-0.15, where the first error is statistical and the second is systematic. We observe no evidence for direct CP violation, obtaining A_CP(KK) = (0.0+/-2.2+/-0.8)% and A_CP(pipi = (1.9+/-3.2+/-0.8)%. In the limit of no CP violation we measure the mixing parameter y_CP = -0.012+/-0.025+/-0.014 by measuring the lifetime difference between D0->K+ K- or pi+pi- and the CP neutral state, D0->K-pi+. We see no evidence for mixing.Comment: 14 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communicatio
    corecore