10 research outputs found

    Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment

    Get PDF
    Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ÎČ2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development

    Biomarkers of conversion to alpha-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder

    Get PDF
    Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving \u3b1-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal \u3b1-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest \u3b1-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of \u3b1-synucleinopathy patients with isolated RBD might develop

    Nachweis von Alpha-Synuclein-Oligomeren und -Aggregaten in Hautbiopsien von Parkinson-Patienten

    No full text
    Lewy bodies and Lewy neurites are neuropathological hallmarks of Parkinson’s disease (PD). These depositions in the brain mostly consist of aggregated α-synuclein (α-syn) phosphorylated at Ser129. A number of studies reported detection of phosphorylated α-syn (p-α-syn) in the dermal nerve fibers in Parkinson’s disease. The objective of this study was to investigate whether pathological α-syn accumulations detected in the skin represent aggregated protein. A number of methods aimed at detecting α-syn oligomers and aggregates were first tested and optimized on the brain samples in PD and normal control. These methods included proximity ligation assay (PLA), PET-blot, immunohistochemical (IHC) stains with α-syn aggregate (5G4) or oligomer specific (ASyO5) antibodies and a stain against native α-syn (syn211) after proteinase K (PK) digestion. Subsequently, the most specific methods (stains with 5G4, ASyO5 and syn211 after PK digestion) were studied in two separate patient and control cohorts. Anti-p-α-syn stain was performed in parallel. Single sections from at least 2 biopsy sites from 44 patients and 22 controls (cohort 1) as well as serial sections of 4 biopsy sites from 27 patients and 5 controls (cohort 2) were systematically studied for presence of aggregated and oligomeric α-syn. In total, 5G4 positive deposits were found in 24% (cohort 1) and 37% (cohort 2), ASyO5 positive lesions in 17,7% (cohort 1) and 33% (cohort 2), syn211 positive lesions after PK digestion in 38,7% (cohort 1) and 48% (cohort 2) of cases. There was a major overlap among positivity for a particular staining on the patient level and in most cases, the same nerve fiber was found to be positive for all 4 markers in neighboring sections. Among the skin biopsies which contained p-α-syn accumulation, 59% were also PK resistant, 41% were 5G4 positive and 45% were ASyO5 positive. The samples belonging to normal controls did not show any positive signal in either of the newly established stainings or in the anti-p-α-syn staining. Using 3 distinct IHC methods, α-syn oligomers and aggregates were detectable in the majority of p-α-syn positive skin biopsies. This finding supports the hypothesis that α-syn aggregation occurs in the peripheral (i.e. dermal) nerves and can be specifically detected using skin biopsy.Die neuropathologischen Kennzeichen des Morbus Parkinson sind Lewy-Körperchen und Lewy-Neuriten. Diese Ablagerungen im Gehirn bestehen hauptsĂ€chlich aus aggregiertem α-Synuclein (α-Syn), das am Ser129 phosphoryliert ist. Mehrere Studien konnten zeigen, dass phosphoryliertes α-Syn (p-α-Syn) auch in Nervenfasern der Haut von Parkinsonpatienten nachweisbar ist. Das Ziel dieser Arbeit war, zu untersuchen, ob es sich bei den pathologischen Ablagerungen von p-α-Syn in der Haut wie im Gehirn um Aggregate handelt. Mehrere Methoden, die dem Nachweis von α-Syn-Oligomere und Aggregate dienen, wurden zuerst an Gehirnen von einem Parkinsonpatienten und Normalkontrolle getestet und optimiert, darunter: Proximity Ligation Assay (PLA), PET-Blot, immunhistochemische FĂ€rbungen mit α-Syn-Aggregat- (5G4) oder Oligomer-spezifischen Antikörper (ASyO5) und eine FĂ€rbung mit einem Antikörper gegen natives α-Syn (syn211) nach Verdau mit Proteinase K (PK). Danach wurden die spezifischsten Methoden (FĂ€rbung mit 5G4, ASyO5 und syn211 nach PK-Verdau) an den Hautstanzbiopsien von zwei Patienten- und Normalkontrollkohorten untersucht. Parallel wurde in den Biopsien das p-α-Syn angefĂ€rbt. Einzelschnitte von je mind. 2 Biopsiestellen von 44 Patienten und 22 Kontrollen (Kohorte 1) sowie Serienschnitte von je 4 Biopsiestellen von 27 Patienten und 5 Kontrollen (Kohorte 2) wurden systematisch nach Vorliegen von aggregierten und oligomerischen α-Syn untersucht. Zusammenfassend, wurden 5G4-positive Ablagerungen in 24% (Kohorte 1) und 37% (2. Kohorte), ASyO5-positive LĂ€sionen in 17,7% (Kohorte 1) und 33% (Kohorte 2), syn211-positive LĂ€sionen nach PK-Verdau in 38,7% (Kohorte 1) und 48% (Kohorte 2) der FĂ€lle gefunden. Das p-α-Syn wurde entsprechend in 43,6% und 48% der FĂ€lle detektiert. Es zeigte sich die Tendenz, dass Patienten, bei denen p-α-Syn nachweisbar war, auch fĂŒr mehrere der neuen Marker positiv waren; auch hĂ€ufig waren fĂŒr alle 4 Marker positive Nervenfasern in naheliegenden Schnitte zu sehen, was fĂŒr eine Kolokalisation spricht. Unter den Hautbiopsien, in den p-α-Syn-Ablagerungen zu sehen waren, hatten 59% gleichzeitig PK-resistente, 41% 5G4- und 45% ASyO5-positive Ablagerungen. Bei Kontrollen waren Ablagerungen weder mit den neu eingefĂŒhrten Methoden noch mit anti-p-α-Syn-FĂ€rbung detektierbar. Mit Hilfe von drei unterschiedlichen immunhistochemischen Methoden waren Oligomere und Aggregate vom α-Syn im Großteil der p-α-Syn-positiven Hautbiopsien nachweisbar. Dieser Befund unterstĂŒtzt die Hypothese, dass die Ablagerung von α-Syn-Aggregaten auch in peripheren (v.a. dermalen) Nerven vorkommt und spezifisch nachgewiesen werden kann

    Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy

    Get PDF
    Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [123^{123}I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [123^{123}I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [123^{123}I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap

    Meso-Neoproterozoic Mafic Sills along the South-Eastern Margin of the Siberian Craton, SE Yakutia: Petrogenesis, Tectonic and Geochemical Features

    No full text
    We report major and trace element concentrations, along with Nd isotope compositions, for Late Mesoproterozoic to Early Neoproterozoic dolerite sills from the Sette-Daban ridge (southern Verkhoyansk, south-east Siberia). Based on their major element composition, all rocks correspond to low-Ti (&lt;3 wt% TiO2) moderately alkaline basalts. The intrusions can be subdivided into two groups based on their trace element compositions. One group includes sills mainly distributed in the southern part of the study area (Yudoma group), with mid-ocean ridge basalt (MORB) trace element patterns enriched in aqueous fluid mobile incompatible (FMI) elements (Sr, Pb, Ba, U). The second group includes sills mostly distributed in the northern part of the study area, enriched in immobile incompatible (II) elements (Th, Nb, light rare earth elements (LREE)) and to a lesser extent, in aqueous fluid mobile elements. The Nd isotope signatures of the dolerites characterize a depleted mantle source, with a small enrichment from recycled continental crust. The geochemical characteristics of these igneous rocks are analogous to low-Ti basalts of large intraplate provinces (e.g., the Karoo and Siberian Traps). We propose that they formed by rifting-induced melting of the heterogeneous metasomatized shallow spinel-bearing mantle zone. We suggest that two different melting sources were involved in the generation of the two geochemically distinct sill groups, including the addition of two different subduction components. The southern sills were formed by melting of depleted lithospheric mantle enriched with FMI elements, corresponding to subduction-induced metasomatic alteration by fluids at shallow depths. The northern dolerites were formed by melting of depleted lithospheric mantle enriched with II elements, associated with the melting of subducted sediments at deeper depths

    Localized Increased Permeability of Blood–Brain Barrier for Antibody Conjugates in the Cuprizone Model of Demyelination

    No full text
    The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood–brain barrier (BBB) integrity in the cuprizone model is still a topic for debate. Several publications claim that the BBB remains intact during cuprizone-induced demyelination; others demonstrate results that could explain the increased BBB permeability. In this study, we aim to analyze the permeability of the BBB for different macromolecules, particularly antibody conjugates, in a cuprizone-induced model of demyelination. We compared the traditional approach using Evans blue injection with subsequent dye extraction and detection of antibody conjugates using magnetic resonance imaging (MRI) and confocal microscopy to analyze BBB permeability in the cuprizone model. First, we validated our model of demyelination by performing T2-weighted MRI, diffusion tensor imaging, quantitative rt-PCR to detect changes in mRNA expression of myelin basic protein and proteolipid protein, and Luxol fast blue histological staining of myelin. Intraperitoneal injection of Evans blue did not result in any differences between the fluorescent signal in the brain of healthy and cuprizone-treated mice (IVIS analysis with subsequent dye extraction). In contrast, intravenous injection of antibody conjugates (anti-GFAP or non-specific IgG) after 4 weeks of a cuprizone diet demonstrated accumulation in the corpus callosum of cuprizone-treated mice both by contrast-enhanced MRI (for gadolinium-labeled antibodies) and by fluorescence microscopy (for Alexa488-labeled antibodies). Our results suggest that the methods with better sensitivity could detect the accumulation of macromolecules (such as fluorescent-labeled or gadolinium-labeled antibody conjugates) in the brain, suggesting a local BBB disruption in the demyelinating area. These findings support previous investigations that questioned BBB integrity in the cuprizone model and demonstrate the possibility of delivering antibody conjugates to the corpus callosum of cuprizone-treated mice

    Diagnostic value of skin RT-QuIC in Parkinson's disease: a two-laboratory study

    No full text
    Skin alpha-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of alpha-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of alpha-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The a-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher alpha-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The alpha-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, alpha-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms

    Diagnostic value of skin RT-QuIC in Parkinson's disease: a two-laboratory study

    No full text
    Skin alpha-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of alpha-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of alpha-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The a-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher alpha-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The alpha-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, alpha-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms

    Dermal Real‐Time Quaking‐Induced Conversion Is a Sensitive Marker to Confirm Isolated Rapid Eye Movement Sleep Behavior Disorder as an Early α‐Synucleinopathy

    No full text
    ABSTRACT:Background:Skin biopsy is apotential tool for the premortem confirmation of anα-synucleinopathy.Objective:The aim was to assess the aggregationassay real-time quaking-induced conversion (RT-QuIC)of skin biopsy lysates to confirm isolated rapid eyemovement sleep behavior disorder (iRBD) as anα-synucleinopathy.Methods:Skin biopsies of patients with iRBD,Parkinson’s disease (PD), and controls were analyzedusing RT-QuIC and immunohistochemical detection ofphospho-α-synuclein.Results:α-Synuclein aggregation was detected in97.4% of iRBD patients (78.4% of iRBD biopsies),87.2% of PD patients (70% of PD biopsies), and 13%of controls (7.9% of control biopsies), with a higherseeding activity in iRBD compared to PD. RT-QuICwas more sensitive but less specific thanimmunohistochemistry.Conclusions:Dermal RT-QuIC is a sensitive methodto detectα-synuclein aggregation in iRBD, and highseeding activity may indicate a strong involvement ofdermal nervefibers in these patients. © 2023 TheAuthors.Movement Disorderspublished by WileyPeriodicals LLC on behalf of International Parkinsonand Movement Disorder Society.Key Words:rapid eye movement sleep behavior dis-order;α-synuclein; Parkinson’s disease; real-timequaking-induced conversion; skin biops

    Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment

    No full text
    Abstract Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ÎČ2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development
    corecore