18 research outputs found

    The need for the nexus approach

    No full text
    The water, energy, and food resources share a lot in common; they have strong interdependencies and are inadvertently affected by action in any one of them. Therefore, the nexus approach (integrated policies related to water, energy, and food) is required in the face of growing concerns over the future availability and sustainability of these resources. The nexus approach can help achieve at least some of the "Sustainable Development Goals (SDGs)" (e.g., SDG 2, 6, 7, 12, 13, 15). This chapter discusses trends in availability and consumption of the three key resources (i.e., water, energy, and food) and interactions between them, and finally provides some reasons why the nexus approach can help achieve social and economic development goals

    Water-energy-food nexus: principles and practices

    No full text

    Not Available

    No full text
    Not AvailableTo assess the role of phenol in flowering of litchi, an experiment was conducted at ICAR-NRC on Litchi, Muzaffarpur. Twenty desired litchi genotypes were selected and content of leaf phenol and leaf flavonoids were estimated from flowering and non-flowering trees. Results revealed that phenol content varied from 22.86 – 53.59 mg/g in flowering tree while it ranged from 10.03 – 33.7 mg/g in non-flowering tree during 2017. Among flowering genotypes phenol content was ranged from 16.51-50.35 mg/g. The highest phenol content was recorded in genotypes IC-0615590 (53.59 mg/g) whereas lowest was found in genotype IC-0615589 (22.86 mg/g) during 2017. The difference in phenol content between flowering and non-flowering tree ranged 12.74 - 66.09 %. The genotype Coll. 39 contained 66.09 % more phenol in flowering tree as compared to non-flowering trees in 2017 and IC-0615597 possessed 12.74% more phenol in flowering tree as compared to non-flowering tree during the same period. Similarly, phenol content ranged from 6.45 – 31.17 mg/g in non-flowering tree in 2018. In 2018, phenol content followed the same trend registering the maximum content in genotype IC-0615590 (50.35 mg/g) and lowest in IC-0615593 (16.51 mg/g). The difference in phenol content between flowering and non-flowering tree in 2018 ranged from 3.27 - 71.46 %. The genotype IC-0615604 possessed 71.46 % more phenol in flowering tree as compared to non-flowering tree and IC-0615593 contained 3.27 % more phenol in flowering tree as compared to non-flowering tree. In general, it was observed that the level of phenol in litchi tree varied from year to year but flowering tree always possessed more content of phenol as compared to non-flowering trees. However, the relation of flavonoids and flowering in litchi was not observed.Not Availabl
    corecore