6 research outputs found

    The brain tracks auditory rhythm predictability independent of selective attention

    No full text
    The brain responds to violations of expected rhythms, due to extraction- and prediction of the temporal structure in auditory input. Yet, it is unknown how probability of rhythm violations affects the overall rhythm predictability. Another unresolved question is whether predictive processes are independent of attention processes. In this study, EEG was recorded while subjects listened to rhythmic sequences. Predictability was manipulated by changing the stimulus-onset-asynchrony (SOA deviants) for given tones in the rhythm. When SOA deviants were inserted rarely, predictability remained high, whereas predictability was lower with more frequent SOA deviants. Dichotic tone-presentation allowed for independent manipulation of attention, as specific tones of the rhythm were presented to separate ears. Attention was manipulated by instructing subjects to attend to tones in one ear only, while keeping the rhythmic structure of tones constant. The analyses of event-related potentials revealed an attenuated N1 for tones when rhythm predictability was high, while the N1 was enhanced by attention to tones. Bayesian statistics revealed no interaction between predictability and attention. A right-lateralization of attention effects, but not predictability effects, suggested potentially different cortical processes. This is the first study to show that probability of rhythm violation influences rhythm predictability, independent of attention

    Altered hierarchical auditory predictive processing after lesions to the orbitofrontal cortex

    No full text
    Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local–global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction

    Preservation of Interference Effects in Working Memory After Orbitofrontal Damage

    No full text
    Orbitofrontal cortex (OFC) is implicated in multiple cognitive processes, including inhibitory control, context memory, recency judgment, and choice behavior. Despite an emerging understanding of the role of OFC in memory and executive control, its necessity for core working memory (WM) operations remains undefined. Here, we assessed the impact of OFC damage on interference effects in WM using a Recent Probes task based on the Sternberg item-recognition task (1966). Subjects were asked to memorize a set of letters and then indicate whether a probe letter was presented in a particular set. Four conditions were created according to the forthcoming response (“yes”/“no”) and the recency of the probe (presented in the previous trial set or not). We compared behavioral and electroencephalography (EEG) responses between healthy subjects (n = 14) and patients with bilateral OFC damage (n = 14). Both groups had the same recency pattern of slower reaction time (RT) when the probe was presented in the previous trial but not in the current one, reflecting the proactive interference (PI). The within-group electrophysiological results showed no condition difference during letter encoding and maintenance. In contrast, event-related potentials (ERPs) to probes showed distinct within-group condition effects, and condition by group effects. The response and recency effects for controls occurred within the same time window (300–500 ms after probe onset) and were observed in two distinct spatial groups including right centro-posterior and left frontal electrodes. Both clusters showed ERP differences elicited by the response effect, and one cluster was also sensitive to the recency manipulation. Condition differences for the OFC group involved two different clusters, encompassing only left hemisphere electrodes and occurring during two consecutive time windows (345–463 ms and 565–710 ms). Both clusters were sensitive to the response effect, but no recency effect was found despite the behavioral recency effect. Although the groups had different electrophysiological responses, the maintenance of letters in WM, the evaluation of the context of the probe, and the decision to accept or reject a probed letter were preserved in OFC patients. The results suggest that neural reorganization may contribute to intact recency judgment and response after OFC damage

    Advances in human intracranial electroencephalography research, guidelines and good practices

    Get PDF
    Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual’s tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research

    Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial

    No full text
    Background: Additional safe and efficacious vaccines are needed to control the COVID-19 pandemic. We aimed to analyse the efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate. Methods: HERALD is a randomised, observer-blinded, placebo-controlled, phase 2b/3 clinical trial conducted in 47 centres in ten countries in Europe and Latin America. By use of an interactive web response system and stratification by country and age group (18–60 years and ≥61 years), adults with no history of virologically confirmed COVID-19 were randomly assigned (1:1) to receive intramuscularly either two 0·6 mL doses of CVnCoV containing 12 μg of mRNA or two 0·6 mL doses of 0·9% NaCl (placebo) on days 1 and 29. The primary efficacy endpoint was the occurrence of a first episode of virologically confirmed symptomatic COVID-19 of any severity and caused by any strain from 15 days after the second dose. For the primary endpoint, the trial was considered successful if the lower limit of the CI was greater than 30%. Key secondary endpoints were the occurrence of a first episode of virologically confirmed moderate-to-severe COVID-19, severe COVID-19, and COVID-19 of any severity by age group. Primary safety outcomes were solicited local and systemic adverse events within 7 days after each dose and unsolicited adverse events within 28 days after each dose in phase 2b participants, and serious adverse events and adverse events of special interest up to 1 year after the second dose in phase 2b and phase 3 participants. Here, we report data up to June 18, 2021. The study is registered at ClinicalTrials.gov, NCT04652102, and EudraCT, 2020–003998–22, and is ongoing. Findings: Between Dec 11, 2020, and April 12, 2021, 39 680 participants were enrolled and randomly assigned to receive either CVnCoV (n=19 846) or placebo (n=19 834), of whom 19 783 received at least one dose of CVnCoV and 19 746 received at least one dose of placebo. After a mean observation period of 48·2 days (SE 0·2), 83 cases of COVID-19 occurred in the CVnCoV group (n=12 851) in 1735·29 person-years and 145 cases occurred in the placebo group (n=12 211) in 1569·87 person-years, resulting in an overall vaccine efficacy against symptomatic COVID-19 of 48·2% (95·826% CI 31·0–61·4; p=0·016). Vaccine efficacy against moderate-to-severe COVID-19 was 70·7% (95% CI 42·5–86·1; CVnCoV 12 cases in 1735·29 person-years, placebo 37 cases in 1569·87 person-years). In participants aged 18–60 years, vaccine efficacy against symptomatic disease was 52·5% (95% CI 36·2–64·8; CVnCoV 71 cases in 1591·47 person-years, placebo, 136 cases in 1449·23 person-years). Too few cases occurred in participants aged 61 years or older (CVnCoV 12, placebo nine) to allow meaningful assessment of vaccine efficacy. Solicited adverse events, which were mostly systemic, were more common in CVnCoV recipients (1933 [96·5%] of 2003) than in placebo recipients (1344 [67·9%] of 1978), with 542 (27·1%) CVnCoV recipients and 61 (3·1%) placebo recipients reporting grade 3 solicited adverse events. The most frequently reported local reaction after any dose in the CVnCoV group was injection-site pain (1678 [83·6%] of 2007), with 22 grade 3 reactions, and the most frequently reported systematic reactions were fatigue (1603 [80·0%] of 2003) and headache (1541 [76·9%] of 2003). 82 (0·4%) of 19 783 CVnCoV recipients reported 100 serious adverse events and 66 (0·3%) of 19 746 placebo recipients reported 76 serious adverse events. Eight serious adverse events in five CVnCoV recipients and two serious adverse events in two placebo recipients were considered vaccination-related. None of the fatal serious adverse events reported (eight in the CVnCoV group and six in the placebo group) were considered to be related to study vaccination. Adverse events of special interest were reported for 38 (0·2%) participants in the CVnCoV group and 31 (0·2%) participants in the placebo group. These events were considered to be related to the trial vaccine for 14 (<0·1%) participants in the CVnCoV group and for five (<0·1%) participants in the placebo group. Interpretation: CVnCoV was efficacious in the prevention of COVID-19 of any severity and had an acceptable safety profile. Taking into account the changing environment, including the emergence of SARS-CoV-2 variants, and timelines for further development, the decision has been made to cease activities on the CVnCoV candidate and to focus efforts on the development of next-generation vaccine candidates. Funding: German Federal Ministry of Education and Research and CureVac
    corecore