1,152 research outputs found

    Random projection to preserve patient privacy

    Get PDF
    With the availability of accessible and widely used cloud services, it is natural that large components of healthcare systems migrate to them; for example, patient databases can be stored and processed in the cloud. Such cloud services provide enhanced flexibility and additional gains, such as availability, ease of data share, and so on. This trend poses serious threats regarding the privacy of the patients and the trust that an individual must put into the healthcare system itself. Thus, there is a strong need of privacy preservation, achieved through a variety of different approaches. In this paper, we study the application of a random projection-based approach to patient data as a means to achieve two goals: (1) provably mask the identity of users under some adversarial-attack settings, (2) preserve enough information to allow for aggregate data analysis and application of machine-learning techniques. As far as we know, such approaches have not been applied and tested on medical data. We analyze the tradeoff between the loss of accuracy on the outcome of machine-learning algorithms and the resilience against an adversary. We show that random projections proved to be strong against known input/output attacks while offering high quality data, as long as the projected space is smaller than the original space, and as long as the amount of leaked data available to the adversary is limited

    Crossing the c=1 barrier in 2d Lorentzian quantum gravity

    Full text link
    In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c>1. This is done by analyzing numerically a system of eight Ising models (corresponding to c=4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff dimension of the ensemble of two-geometries is two (as in pure Lorentzian quantum gravity) and the matter behaviour is governed by the Onsager exponents. By increasing the amount of matter to 8 Ising models, we find that the geometry of the combined system has undergone a phase transition. The new phase is characterized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2d Euclidean quantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned so far from 2d Lorentzian quantum gravity.Comment: 21 pages, 18 figures (postscript), uses JHEP.cls, see http://www.nbi.dk/~ambjorn/lqg2 for related animated simulation

    On the Quantum Geometry of String Theory

    Get PDF
    The IKKT or IIB matrix model has been proposed as a non-perturbative definition of type IIB superstring theories. It has the attractive feature that space--time appears dynamically. It is possible that lower dimensional universes dominate the theory, therefore providing a dynamical solution to the reduction of space--time dimensionality. We summarize recent works that show the central role of the phase of the fermion determinant in the possible realization of such a scenario.Comment: 3 pages, 2 figures, Lattice2001(surfaces

    The QCD sign problem and dynamical simulations of random matrices

    Full text link
    At nonzero quark chemical potential dynamical lattice simulations of QCD are hindered by the sign problem caused by the complex fermion determinant. The severity of the sign problem can be assessed by the average phase of the fermion determinant. In an earlier paper we derived a formula for the microscopic limit of the average phase for general topology using chiral random matrix theory. In the current paper we present an alternative derivation of the same quantity, leading to a simpler expression which is also calculable for finite-sized matrices, away from the microscopic limit. We explicitly prove the equivalence of the old and new results in the microscopic limit. The results for finite-sized matrices illustrate the convergence towards the microscopic limit. We compare the analytical results with dynamical random matrix simulations, where various reweighting methods are used to circumvent the sign problem. We discuss the pros and cons of these reweighting methods.Comment: 34 pages, 3 figures, references added, as published in JHE

    A new perspective on matter coupling in 2d quantum gravity

    Full text link
    We provide compelling evidence that a previously introduced model of non-perturbative 2d Lorentzian quantum gravity exhibits (two-dimensional) flat-space behaviour when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behaviour lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different, and much `smoother' critical behaviour.Comment: 24 pages, 7 figures (postscript

    Higher myocardial strain rates duringisovolumic relaxation phase than duringejection characterize acutely ischemic myocardium

    Get PDF
    AbstractObjectivesThe aim of this study was to define an index that can differentiate normal from ischemic myocardial segments that exhibit postsystolic shortening (PSS).BackgroundIdentification of ischemia based on the reduction of regional systolic function is sometimes challenging because other factors such as normal nonuniformity in contraction between segments, tethering effect, pharmacologic agents, or alterations in loading conditions can also cause reduction in regional systolic deformation. The PSS (contraction after the end of systole) is a sensitive marker of ischemia; however, inconsistent patterns have also been observed in presumed normal myocardium.MethodsTwenty-eight open-chest pigs underwent echocardiographic study before and during acute myocardial ischemia induced by coronary artery occlusion. Ultrasound-derived myocardial longitudinal strain rates were calculated during systole (SSR), isovolumic relaxation (IVRSR), and rapid filling (ESR) phases in both ischemic and normal myocardium. Systolic strain (ϵsys) and postsystolic strain (ϵps) were calculated by integrating systolic and postsystolic strain rates, respectively.ResultsDuring ischemia, SSR, ESR, and ϵsys in ischemic segments were significantly lower (in magnitude) than in nonischemic segments or at baseline. However, some overlap occurred between ischemic and normal values for all three parameters. At baseline, 18 of 28 animals had negative IVRSR (i.e., PSS) in at least one segment. During coronary artery occlusion, IVRSR became negative and larger in magnitude than SSR in all ischemic segments. The IVRSR/SSR and ϵps best differentiated ischemic from nonischemic segments.ConclusionsIn the presence of reduced regional systolic deformation, a higher rate of PSS than systolic shortening identifies acutely ischemic myocardium

    Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

    Get PDF
    The 5g4f5g-4f transitions in pionic nitrogen and muonic oxygen were measured simultaneously by using a gaseous nitrogen-oxygen mixture at 1.4\,bar. Due to the precise knowledge of the muon mass the muonic line provides the energy calibration for the pionic transition. A value of (139.57077\,±\pm\,0.00018)\,MeV/c2^{2} (±\pm\,1.3ppm) is derived for the mass of the negatively charged pion, which is 4.2ppm larger than the present world average

    Systematic study of the SO(10) symmetry breaking vacua in the matrix model for type IIB superstrings

    Full text link
    We study the properties of the space-time that emerges dynamically from the matrix model for type IIB superstrings in ten dimensions. We calculate the free energy and the extent of space-time using the Gaussian expansion method up to the third order. Unlike previous works, we study the SO(d) symmetric vacua with all possible values of d within the range 2d72 \le d \le 7, and observe clear indication of plateaus in the parameter space of the Gaussian action, which is crucial for the results to be reliable. The obtained results indeed exhibit systematic dependence on d, which turns out to be surprisingly similar to what was observed recently in an analogous work on the six-dimensional version of the model. In particular, we find the following properties: i) the extent in the shrunken directions is given by a constant, which does not depend on d; ii) the ten-dimensional volume of the Euclidean space-time is given by a constant, which does not depend on d except for d = 2; iii) The free energy takes the minimum value at d = 3. Intuitive understanding of these results is given by using the low-energy effective theory and some Monte Carlo results.Comment: 33 pages, 10 figures; minor corrections, reference added. arXiv admin note: substantial text overlap with arXiv:1007.088
    corecore