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Abstract

With the availability of accessible and widely
used cloud services, it is natural that large
components of healthcare systems migrate to
them; for example, patient databases can be
stored and processed in the cloud. Such cloud
services provide enhanced flexibility and addi-
tional gains, such as availability, ease of data
share, and so on. This trend poses serious
threats regarding the privacy of the patients
and the trust that an individual must put into
the healthcare system itself. Thus, there is a
strong need of privacy preservation, achieved
through a variety of different approaches.

In this paper, we study the application of
a random projection-based approach to pa-
tient data as a means to achieve two goals:
(1) provably mask the identity of users un-
der some adversarial-attack settings, (2) pre-
serve enough information to allow for aggre-
gate data analysis and application of machine-
learning techniques. As far as we know, such
approaches have not been applied and tested
on medical data. We analyze the trade-
off between the loss of accuracy on the out-
come of machine-learning algorithms and the
resilience against an adversary. We show
that random projections proved to be strong

against known input/output attacks while of-
fering high quality data, as long as the pro-
jected space is smaller than the original space,
and as long as the amount of leaked data avail-
able to the adversary is limited.

1 Introduction

During the recent years, we witnessed the tremendous
progress made in the field of wireless sensor networks.
This paved the way and facilitated the wide adop-
tion of small electronic devices with interconnection
capabilities. These devices composed the majority of
the so-called Internet of Things (IoT). The IoT is a
highly dynamic and radically distributed networked
system, composed of an incredible high number of ob-
jects [MSDPC12]. It is vastly considered as one of the
most expanding area within future technologies and
it is attracting vast attention in different industry ap-
plications [LL15], ranging from smart cities to home
automation, farming, and many more fields of appli-
cation. Ubiquitous sensors, smart objects and devices
involved in IoT can generate a tremendous amount of
data [JDXC+14]. This flow of data requires robust,
available and fast storage solutions and builds the
bases to very effective and powerful algorithms in the
fields of machine learning and data mining [CDW+15].

Electronics health-care solutions and, generally
speaking, the Internet of Health Things (IoHT) fol-
lows the same trend. About 73% of healthcare exec-
utives say that IoHT is a disrupting techology for the
next years and it is becoming one of the most funded
areas in IoT. Pervasive IoHT enables cost savings for
both the administrations and the individuals, but on
the other hand it has some barriers, like: privacy and
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security concerns, lack of skilled workers, poor inter-
operability and more [acc17].

Given the sensitive nature of healthcare data, there
is a strong need to protect the information of the
patients. Furthermore, the recent adoption of Gen-
eral Data Protection Regulation (GDPR) strength-
ens data protection and now it must be applied to
any organisation or individual that collects and pro-
cesses information related to EU citizens, regardless
where the data is physically stored or where they are
based[Alb16, Tan16]. At the same time, analysis of
such data are crucial for medical research and the drug
industry. Consequently, there is a need to design ap-
proaches that allow data processing without exposing
the personal underlying information.

For this reason, there has been a series of tech-
niques for perturbing data such that information on
individual data points cannot be leaked, while aggre-
gate information is preserved. Examples of such ap-
proaches are k-anonymity [SS98] and differential pri-
vacy [Dwo06]. The various approaches put different
importance on the privacy requirements; for instance,
differential privacy attempts to alter the data such as
to provide very strong privacy guarantees, typically,
without specifying the usefulness of the resulting data.
for general-purpose data analysis.

In this paper we apply a method, which can be
found in [Liu07a], where the explicit goal is to ob-
tain a dataset that remains useful after the perturba-
tion (still providing some privacy guarantees). More
specifically, our approach is based on random projec-
tions (RP), a technique that is typically applied pri-
marily for efficiency reasons. It is based on a fun-
damental result from the work of Johnson and Lin-
denstrauss [JL84] and the idea is the following: As-
sume that we have large amounts of data (n data-
points), lying on a high-dimensional space. Then, if
we project each point to a random subspace of dimen-
sion O(log n/ε2), with high probability all pairwise dis-
tances between the data points are preserved within a
factor of 1± ε. This technique has found multiple ap-
plications in streaming algorihtms, in finding nearest
neighbors in high-dimensional spaces, in reducing the
dimension of databases, and so on.

Our idea of applying a random projection approach
on privacy-preserving data mining is the following. As-
sume that we have the records of multiple patients.
Then we can consider a random projection of these
data. The result of Johnson and Lindenstrauss guar-
antees that if we execute algorithms that depend on
the pairwise distances on the data (e.g., several clus-
tering or classification algorithms), then the results ob-
tained are with high probability similar to those ob-
tained on the real data set (and the error can be quan-
tified). Furthermore, because the projections are ran-

dom, one cannot use the projected data to obtain the
real data: each datapoint appears to be random. This,
unless the attacker has some significant power. This
trade off is studied in previous works (e.g. [BBM16],
[Liu07a]).

It is not clear a priori that this approach could work
in the application on medical dataset that interests us.
For instance, the lemma by Johnson and Lindenstrauss
is typically applied on settings where the original data
lie on a very high-dimensional space. However, in prac-
tice, the original dimension may be low (for instance
in our dataset it is about 50). In this paper we look
at this and other issues by applying the random pro-
jection to a dataset containing information about 70K
cases of diabetes [SDG+14]. We show that it is possi-
ble to reduce the dimensionality of the data and still
obtain accuracy scores that are comparable with the
ones obtained from the original non-projected data.
At the same time, we also show how sensible and pri-
vate patient information such their age or gender are
safe against attacks that try to reconstruct the map-
ping between the original data and the projected data
after applying random projections.

Structure of the paper. The rest of this paper
is organized as follows. In Section 2 we present cur-
rent solutions and the state of the art on random pro-
jections and other privacy-preserving techniques. In
Section 3 we present the goals of our work and the ap-
proach we used for achieving them, leveraging random
projections. In Section 4 we show our experimental
results, where we explore the limits of our approach
both in terms of accuracy and privacy protection. We
conclude in Section 5 where we also propose future
work.

2 State of the art

Data leakages are very common [Wik14]. In this work,
we are more interested in reducing the ability of an
attacker to reconstruct non-yet-leaked data from the
leaked one. Within medical premises, there are multi-
ple individuals who could obtain access to protected
information from the rightous doctor to untrustful
workers. This could lead to multiple entities knowing
protected personal health information.

Before 2003, with the enforcing of HIPAA rules,
some private medical information were regularly
shared among professional [Bro00]. Following the
guidelines from Health Insurance Portability and Ac-
countability Act (HIPAA) [fDCP+03], the US govern-
ment made the first concrete attempt to mitigate the
chance of re-identification of patients. In 2009, it was
clear that HIPAA is not sufficient to protect the pri-
vacy of an individual. In fact, the HIPAA was not



able to protect the user personal information after the
anonimization process that substituted HIPAA param-
eters with IDs. In a famous case [New09], some re-
searchers were able to re-identify users and also their
sexual orientation and other information. Moreover,
the availability of correlated data (coming from the
same source or other sources) could greatly help to
identify a patient. Data breaches continue to increase
year after year, between 2005 and 2014, only in the
US, more than 26 million of people had some form of
personal health information leaked [Wik14].

Therefore, more elaborate tecniques, which add
noise to the data, have been developed in the last years
to protect users’ privacy and still maintain a good level
of accuracy when exploring and analyzing the data.
One of these is differential privacy [Dwo06]. This ap-
proach focuses on providing statistically coherent re-
sponses querying a database, i.e. third parties are in-
terested to query for information about a sample of
a population, not a single individual. Instead, we are
interested also in providing data about a specific indi-
vidual, for example investigating if he or she is suitable
for a clinical trial.

In [KKMM12a] the authors proved that the
Johnson-Lindenstrauss transform can be used as an al-
ternative approach to achieve differential privacy. The
method is then compared against other techniques,
such as adding Gaussian noise to data or random-
ized response. The proposed approach has superior
accuracy bounds than the others, while still keeping
secure the privacy of the records. The authors also
criticize the work of Liu et al. about releasing data
to third parties after applying random projections in
order to protect sensitive information while still pre-
serving accuracy of different data mining algorithms:
an adversary that has some background knowledge can
infer approximations of the original data. We address
this issue in the scenario of known input-output data
(section 3.2) and show how in real world scenario re-
garding medical data, under reasonable assumptions
for the power of the adversary, it is difficult for an at-
tacker to discover private information from projected
records.

In the literature there exist a very large number of
works regarding the re-identification of person start-
ing from various data, within some degree it is called
“breaking the k-anonimity”. For example in [NS08]
the authors presents a method to re-identify a user
from its preferences.

In this paper, we aim at investigating to what ex-
tent RPs can provide useful data for machine learning
algorithms (e.g. classification) on a group of potential
patients while preserving at the same time the privacy
of individuals. RPs have been employed in a number of
healthcare applications, for example to segment tumor

areas [KEDR12], to enhance tomography [FMR10], to
cluster DNA microarrays[AV09] or to classify cancer
[XLZW16].

In [LKR06], RPs were used to mask clear data pro-
jecting them in smaller spaces, while in [BBM16] and
[KKMM12b], similarly to our work, the authors dis-
cuss how to exploit RPs to enhance data privacy. The
authors in [LKR06] also discuss the utility of the RP
in reducing complexity of problems while maintaining
the usefulness of the projected data for algorithms. It
is anticipated that by 2020 there will be more than
26 billion devices involved in IoT related applications
[RvdM14]. Surely, not all of them will be part of
the healthcare field, however we expect a very large
amount of information to process. The usefulness of
RP in reducing problem complexity (or resource re-
quirements) is well understood and exploited as use-
ful resource in the literature [CEM+15, LKR06, FB03,
BZD10, AWY+99]. For example, in [FB03], the au-
thors explore some ways to reduce high dimensional
data for clustering while, in [LF12], is presented a work
on classification of small patches of images from a very
large database that takes advantage of the properties
offered by RPs.

During the last two decades, the contribution of ma-
chine learning and data mining algorithms in health-
care applications became more frequent year after
year. This is well demonstrated in the literature,
for example in [CHH+17, MP99, ZWC+09, HHC+14].
One last aspect to consider is the chance to link to-
gether multiple datasets. For example in [LJJ+09], the
authors presented the infrastructure of a databank in
order to enable record-linkage research studies. This
linkage on one hand could deeply help the development
of newer treatments or drugs, but on the other hand
poses threats to the privacy of the individuals.

3 Problem Formulation

We consider a reference scenario in which a group of
users, characterized by private features, are potentially
suitable for a clinical trial. Only a limited number of
users in the group will be actually enrolled in the trial.
For the enrolled users, namely the patients, the private
features will be eventually made public to participate
to the clinical trial in the most effective way. Some
knowledge on the group is of primary importance for
the researchers to understand the size and the char-
acteristics of potential patients. In general, users are
well disposed to support this need of the researchers
provided that their privacy is preserved. The main
problem we want to address in this paper is:

Can we learn something on the group of users as a
whole, while preserving the privacy of the individuals



who will not participate in the trial?

More formally, we consider a group of n users, where
each user u is characterized by m features. We repre-
sent the corresponding dataset as a matrix X ∈ Rm×n,
with m rows (the features) and n columns (the users).
As already observed, in the era of big data, m and n
can be particularly big.

Giannella et al. [GLH13] show how it is possible to
break the privacy in some contexts of distance preserv-
ing mappings. Liu [Liu07b] instead, highlights how
mappings that do preserve distances within certain
bounds like random projections can boost the privacy
guarantees. We will apply these techniques in order
to prove that users’ privacy can be kept safe against
malicious attackers.

We are interested in understanding to what ex-
tent the random projection technique, which has been
originally conceived to reduce the dimensionality of a
dataset, can also be used to preserve the privacy of the
users. In particular, we apply a random projection to
X, such that if R ∈ Rk×m is the random-projection
matrix Y = RX is the transformed matrix after ap-
plying the random projection, with Y ∈ Rk×n. We
denote by xui the column in X associated to user ui,
and with yui the corresponding column in Y . In the
scenario we are describing the projected matrix Y is
known to the public, it is indeed the dataset on which
researchers try to distill information on the group; the
transformation matrix R and the original data X are
private. Some columns of X may become public once
the corresponding users will eventually decide to par-
ticipate to a clinical trial, in other words some pairs
(xui , y

u
i ) will become public.

We can now better describe the problem, splitting it
into two sub-problems:

Accuracy. Can we learn something on the group ex-
ploiting Y ? Here we want to understand if the
results of some machine-learning algorithms on Y
are a good approximation of the ones obtained on
X. If we answer positively to this question, we
can at least conclude that what can be learned
from the original data can be also learned from
the projected data.

Privacy. Can we preserve the privacy of the individ-
uals that will not participate in the trial? As al-
ready observed, Y is public whereas only some
columns of X will eventually become public when
the corresponding users will decide to partici-
pate in a clinical trial. Consequently, some pairs
(xui , y

u
i ) will become public. Here we want to un-

derstand if an attacker knowing Y and the some
pairs (xui , y

u
i ) can possibly know something about

the other users that do not participate in the trial.

We now elaborate on these two dimensions.

3.1 Accuracy

Lemma 3.1 provides a technique to generate a low-
dimensional representation of the original data main-
taining the pairwise distance within an error ε. Since
the pairwise distance is the key ingredient for many
classification tasks performed by machine learning al-
gorithms, this property allow us to have some guar-
antees that the solution found in the low-dimensional
space is a good approximation of the solution in the
original and higher dimensional space. Furthermore,
reducing the size of the input data speeds-up the ex-
ecution time of the algorithms and limits the amount
of resources needed.

Lemma 3.1 (Johnson and Lindenstrauss) Given ε >
0 and an integer n let k be a positive integer such that

k ≥ k0 = O( log(n)ε2 ). For every set P of n points in
Rm there exists a mapping f : Rm → Rk such that for
all u, v ∈ P

(1− ε) ‖ u− v ‖2≤‖ f(u)− f(v) ‖2≤ (1 + ε) ‖ u− v ‖2

It can be proved that a random projection, is a map-
ping f that fulfills the previous lemma with positive
probability. This is often referred as JL-embeddings.

3.2 Privacy: Known Input–Output Attack

We now try to answer one of the questions we raised
in the previous section: Can a a malicious third party
who knows some pairs (xui , y

u
i ) (i.e. that a particular

record xui is associated to yui after its projection) learn
information about other records?

Liu in his Ph.D. thesis [Liu07b] describes a Bayes
privacy model to measure the privacy offered by a
perturbation technique. The model considers the at-
tacker’s apriori and a posteriori beliefs about the data
and uses Bayesian inference to evaluate the privacy.
For completeness, we repeat his framework here.

Let x be the unknown private data, y the perturbed
data and θ the attacker’s additional knowledge about
the data. Then the MAP estimate of x given y and θ
is

x̂MAP (y, θ) = arg max
x

fx|y,θ(x|y, θ)

with fx|y,θ the conditional probability density of x
given y and θ.

Let Xp denote the first p columns of X and Xn−p
the remaining columns. We define similarly Yp and
Yn−p. We further assume that the columns of Xp are
linearly independent and that Xp is known to the at-
tacker (i.e., the attacker has full knowledge of p pa-
tients). Y is entirely known to the attacker, because



as we stated before, it is publicly available to conduct
experiments on the projected data.

For the next reasoning the following hypothesis
must be verified:

• The original data arose from as a sample from a
matrix variate distribution.

• The projection matrix R is a k ×m random ma-
trix with each entry indipendent and identically
distributed with 0 mean and unit variance. R has
a matrix variate Gaussian distribution with mean
matrixM = 0 and covariance matrix Σ = Ik⊗In.1

• Y has a matrix variate Gaussian distribution with
mean matrix M = 0 and covariance matrix Σ =
Ik ⊗ 1

kX
TX

The attacker will try to produce x̂i , with 1 ≤ i ≤
m−p, such that x̂i is a good estimate of the undisclosed
private record xi. In other words the attacker’s target
is to try to give an estimation of one of the records
contained in Xn−p, given that he knows the records in
Xp and their randomly projected counterpart in Yp.

We now derive the MAP estimate of x given y = Rx
and the known matrices Xp and Yp

x̂MAP (y, θ) = arg max
x

fx|y,θ(x = x| 1√
k
Rx = y,

1√
k
RXp = Yp)

which can be simplified in

arg max
x

fx,y,θ(
1√
k
RX = Y )

where X = [xXp] and Y = [yYp].
We further suppose that the attacker has no other

background knowledge about the private data, so we
can assume that θ = 0.

The previous result can be written as

arg max
x

fx,y(
1√
k
RX = Y ) =

arg max
x

f 1√
k
RZ|Z(

1√
k
RZ = Y |Z = X)fZ(Z = X)

If we assume that fZ is distributed uniformly over an
interval, we finally get

x̂MAP (y) = arg max
x

f 1√
k
RZ|Z(

1√
k
RZ = Y |Z = X)

In [Liu07b, Theorem 5.3.8] is shown that the prob-
ability density function we obtained has the following
form

(2π)−
1
2k(p+1)det(

1

k
X
T
X)−

1
2ketr{−1

2
Y (

1

k
X
T
X)−1Y

T }

1⊗ indicates the Kroenecker product of two matrices [Liu07b]

We want to maximize this function in order to solve
the problem of finding the best estimate of x given the
observation of Xp.

Liu proposes an algorithm to estimate the nondis-
closed records of a certain dataset. Experimental re-
sults have shown that while decreasing the number
of column records known to the attacker (denoted by
p) the relative error of the estimation increases. The
error in the estimation increases also decreasing the
dimensionality of the projected subspace (denoted by
k). In particular the algorithm uses the Nelder–Mead
simplex algorithm to find the optimal solution of the
maximization problem.

4 Experimental results

In this section, we present experimental results ob-
tained on a dataset containing information about
70000 cases of diabetes diagnosticated in 130 US hos-
pitals during the decade 1999-2008 [SDG+14] 2. From
now on we will refer to this dataset as the diabetes
dataset.

We focus on the classification of patients based
on their privatized data. Following the work in
[DMS+17, HXY+16], we choose to use random forest
classifier in our dataset to classify the users. More-
over, from the work in [Jol17], we know that random
forest classifiers works really well with random pro-
jections. In Figure 1 we report the effectiveness in
terms of accuracy running the random forest classi-
fier [Pal05] on the original data and on the projected
data in multiple lower dimensional spaces. To run and
validate the classification algorithm, we divided the
whole dataset into two parts: train and test. In the
dataset we decided to predict the range of glucose level
in the blood. So that, the algorithm was firstly trained
with the records within the train part of the diabetes
dataset, providing all the target values. Thus, we made
the random forest classifier algorithm predicts the tar-
get values in the test part giving its features as in-
put. Moreover, we tested the effectiveness of RPs also
with k-nearest neighbors (k-NN) classifier, the results
were reported in Figure 2. Our approach was inspired
by [AC06]. The results are quite different because in
the first experiment we taken a feature of the dataset
(the range of glucose level in the blood) as the value to
predict, instead with the second experiment we choose
to run firstly a kMeans clustering algorithm (on the
whole dataset) to obtain labeled groups and then, with
the k-nearest neighbors (k-NN) classifier we predicted
the values.

The blue line represents the accuracy of the machine

2The dataset is called “Diabetes 130-US hospi-
tals for years 1999–2008 Data Set” and is available at
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008 this page



learning algorithm on the original data. The orange
line, instead, represents the accuracy of the same al-
gorithm on the projected (obfuscated) data. We tested
the classification algorithm on projected spaces in dif-
ferent sizes, starting from only 2 components up to 10
components.

Figure 1: Accuracy of the random forest classifier al-
gorithm on the original data (blue line) and on the
projected data (orange line), varying the projection
space (# of components). Mean values are reported
as lines and 95% confidence intervals are reported as
vertical lines.

Figure 2: Accuracy of the k-nearest neighbors (k-NN)
algorithm on the original data (blue line) and on the
projected data (orange line), varying the projection
space (# of components). Mean values are reported
as lines and 95% confidence intervals are reported as
vertical lines.

The lines plotted in Figure 1 presents the average
values for each projection space, while the vertical
wiskers represent the confidence interval correspond-
ing to a specific projection space. For the baseline
(classification on the clear data) we ran the classifica-
tion algorithm 50 times, in each round starting from
a random state of the random forest classifier. Since
the original data is not projected into any space, we
have only a baseline with the associated mean value
and confidence interval. Thus, we reported the con-
fidence interval only at the lefties part of line using

wisker again. Instead, for the accuracy of classifica-
tion on the projected data, we ran the algorithm more
than 100 times. In each round the algorithm generated
a value for each projected space. The results were ob-
tained using the scikit-learn package on Python 3.6.

In [KLR06, LGK06] the authors explore the security
of such techniques: they show how it is possible to use
data dimensionality reduction techniques to lower the
complexity of data mining algorithms while preserving
their accuracy and how those techniques preserve the
privacy of users.

The authors start from the same privacy hypothesis
we have presented in 3.2 and study how an attacker in
possession of a collection of linearly independent pri-
vate data records and their corresponding transformed
part can gather some insight about other records.

We present the results we got running the algorithm
of [Liu07b] on this dataset. After choosing a number p
of record pairs (xp, yp) we select a record x for which
we do not know the mapping; the algorithm we are
using will try to give an estimation x̂ of the original
record x.

We used two techniques to evaluate how similar to
the original records the algorithm’s estimations were.
We measured the distance between the estimation x̂
provided by the algorithm and the original record x.
We compute the relative error between the two vectors
with the following:

E(x, x̂) =
||x− x̂||2
||x||2

The error E increases with the Euclidean distance be-
tween the two. Notice that with this notation it may
happen that the error is greater than one: this could
verify in the case that the distance between x and its
estimations x̂ is high and the norm of x is a small value.
This could happen if the algorithm’s estimation is very
far off from the original record.

This measuring has the drawback to lack an upper
bound for the dissimilarity. Neither the cosine similar-
ity helps, since in our case we are not interested only
in the direction of vectors but also in their magnitude.

A solution is provided in [JNY07], where a radial
basis function kernel can be used for representing sim-
ilarities: we are going to use 1− 1

edist(x,x̂) as a similar-
ity function between x and its estimation x̂, where
dist(x, x̂) = ||x − x̂||2. The bigger the Euclidean
distance between two vectors, the bigger the error
edist(x,x̂) will be. In this way we have a [0, 1) bound
for the similarity of the estimations. By applying the
inverse we get a value in the range [0,1): if x and x̂
are the same vector (perfect reconstruction performed
by the algorithm) then 1

edist(x,x̂)
= 1.

Our workplan is the following: for every subspace
of dimensionality k we apply the algorithm with differ-



ent knowledge about the number of pairs (xp, yp) the
attacker knows. We go from p = k−1 to p = 1. In the
next figures we display the results of our experiments,
with the two different measuring techniques we used
to quantify the similarity between the original records
and the estimated ones. We report the mean of the
errors for every pair (k, p) and the variance. On the
X axis are placed the tuples (k, p) for which we have
conducted the experiments, on the Y axis we placed
the reconstruction errors.
On low-dimensionality subspaces we get a high rela-
tive error, meaning that it is not possible to give an
effective approximation of the original (private) data
records. In higher dimensions the approximation is
closer to the original data. We ran our experiments
with 10 features of the dataset, since with vectors of
higher dimensionality it becomes more difficult to run
the reconstruction algorithm in reasonable times; also
with higher dimensionalities the algorithm we are us-
ing outputs vector reconstructions that are very dis-
similar from the original ones.

We applied the random projection to reduce the fea-
ture space in different dimensions, from 10 to 3. No-
tice, however, that even when the projected space has
the same dimension of the original space, we already
get a significant relative error, meaning that on the av-
erage it is not possible for the attacker to extrapolate
any useful information about the patients’ records. So
for records of higher dimensionality there is already a
safe privacy bound when applying random projection
to them, at least against this kind of attacks.

We assigned an increasing numerical value to nom-
inal features, that is, we assigned 0 to the text male
and 1 to text female in the gender feature.

We applied random projection to this records, from
k = 10 (no dimensionality reduction) to k = 3; the
number p of pairs (original record, projected record)
known to the attacker is in the range k − 1 ≤ p ≤ 1.

With k = 2 we obviously have only p = 1: we
omit this result since it is not meaningful with respect
the other results we get for higher k and p, because it
does not show how knowing less (or more) information
about the original data changes the reliability of the
reconsturction we get.

In the next figures we show the mean and variances
of the errors for every tuple (k, p) for which we have
conducted the experiment. It can be seen from the
charts that as the number of known input-output pairs
p decreases, the reconstruction error increases. To-
gether with the dimensionality reduction, disclosing a
scarce number of known input-output pairs can help
with the task of preserving the privacy of users in-
volved in clinical trials.

In this case we are projecting low dimensionality
vectors (k = 10) but we still get high reconstruction er-

Figure 3: Mean and variance of the relative error while

using the formula ||x−x̂||2||x||2

Figure 4: Mean and variance of the similarity between
original records and their reconstruction while using
the similarity function 1− 1

e||x−x̂||2

rors when applying the techniques we have explained.
This is another confirmation of the thesis that random
projections help keep the privacy of users when their
information is shared among research institutes.

5 Conclusions

In this work, we applied an random-projections ap-
proach to privacy-preserving data mining of medical
data.

First we demonstrated the usefulness of RP in in-
creasing privacy of personal health data. The pro-
jected data are useful for machine learning algorithms
(for example, in clustering) while allows the sharing of
information between parties without revealing the pa-
tients’ clear data. In this particular application, this
is of notable importance since allows entities involved



in different health branches to cooperate effectively
without sharing clear data. Second, we investigated
to what extent an attacker can discover additional in-
formation starting from leaked data. As long as the
projected space is smaller than the original space, and
as long as the amount of data leaked is small, than the
proposed approach is robust and mantains very good
performance in both accuracy and privacy.

We analyzed the ratio behind and the performances
(in terms of accuracy) of the RP applied on sensible
healthcare data. The results shows that the use of RP
offers great enhancements in privacy protection. This
was a first step into developing a full-fledged platform
that allows the effective share of medical data. In fu-
ture we are planning a bigger real-world deployment
of such platform to further validate our results, plus
an audit to check privacy protection against real third
parties.
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