16 research outputs found

    OptPipe - a pipeline for optimizing metabolic engineering targets

    Get PDF
    International audienceBackground: We propose OptPipe-a Pipeline for Optimizing Metabolic Engineering Targets, based on a consensus approach. The method generates consensus hypotheses for metabolic engineering applications by combining several optimization solutions obtained from distinct algorithms. The solutions are ranked according to several objectives, such as biomass and target production, by using the rank product tests corrected for multiple comparisons. Results: OptPipe was applied in a genome-scale model of Corynebacterium glutamicum for maximizing malonyl-CoA, which is a valuable precursor for many phenolic compounds. In vivo experimental validation confirmed increased malonyl-CoA level in case of sdhCAB deletion, as predicted in silico. Conclusions: A method was developed to combine the optimization solutions provided by common knockout prediction procedures and rank the suggested mutants according to the expected growth rate, production and a new adaptability measure. The implementation of the pipeline along with the complete documentation is freely available at https://github.com/AndrasHartmann/OptPipe

    BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    Get PDF
    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Diálogo(s) sem fronteiras?

    No full text
    UID/HIS/04666/2013Este colóquio visa aprofundar o debate iniciado aquando do realizado em outubro de 2014, intitulado “Renascimento(s) em Portugal ou Renascimento português?” e onde se lançaram alguns vectores que problematizaram o modo como este tempo se desenvolveu em Portugal. Assim, partindo dalgumas das interrogações então equacionadas, nomeadamente em torno do conceito de Renascimento e das suas possíveis cronologias, intensificar-se-á a nossa análise através da descodificação dos diálogos específicos que, ao tempo, se foram desenvolvendo entre Portugal e diferentes reinos e cidades da Europa de Itália, Espanha, França, Inglaterra e Império. Numa Europa onde se redesenhavam fronteiras, exercitavam e questionavam modelos imperiais, procurar-se-á, ao longo de dois dias debater diferentes olhares, ampliando a nossa área de investigação aos Velhos e Novos Mundos. Reflectir-se-á neste encontro em torno de tópicos como: os espaços e as suas descrições (cidades, campos, rotas, África, Ásia e Américas); a história, a memória e o encontro com o património; as novas ideias e práticas da mercancia; os discursos (a novas formas de poesia e narrativa) e os suportes de divulgação (imprensa e gravura); as artes literárias, visuais, musicais...publishersversionpublishe

    Implementation of Synthetic Pathways to Foster Microbe-Based Production of Non-Naturally Occurring Carboxylic Acids and Derivatives

    No full text
    Microbially produced carboxylic acids (CAs) are considered key players in the implementation of more sustainable industrial processes due to their potential to replace a set of oil-derived commodity chemicals. Most CAs are intermediates of microbial central carbon metabolism, and therefore, a biochemical production pathway is described and can be transferred to a host of choice to enable/improve production at an industrial scale. However, for some CAs, the implementation of this approach is difficult, either because they do not occur naturally (as is the case for levulinic acid) or because the described production pathway cannot be easily ported (as it is the case for adipic, muconic or glucaric acids). Synthetic biology has been reshaping the range of molecules that can be produced by microbial cells by setting new-to-nature pathways that leverage on enzyme arrangements not observed in vivo, often in association with the use of substrates that are not enzymes’ natural ones. In this review, we provide an overview of how the establishment of synthetic pathways, assisted by computational tools for metabolic retrobiosynthesis, has been applied to the field of CA production. The translation of these efforts in bridging the gap between the synthesis of CAs and of their more interesting derivatives, often themselves non-naturally occurring molecules, is also reviewed using as case studies the production of methacrylic, methylmethacrylic and poly-lactic acids

    Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production

    No full text
    Itaconic acid (IA), or 2-methylenesuccinic acid, has a broad spectrum of applications in the biopolymer industry owing to the presence of one vinyl bond and two acid groups in the structure. Its polymerization can follow a similar mechanism as acrylic acid but additional functionality can be incorporated into the extra beta acid group. Currently, the bio-based production of IA in industry relies on the fermentation of the filamentous fungus Aspergillus terreus. However, the difficulties associated with the fermentation undertaken by filamentous fungi together with the pathogenic potential of A. terreus pose a serious challenge for industrial-scale production. In recent years, there has been increasing interest in developing alternative production hosts for fermentation processes that are more homogenous in the production of organic acids. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH, which is a highly desirable trait by easing downstream processing. We introduced cis-aconitic acid decarboxylase gene (cad) from A. terreus (designated At_cad) into this yeast and established the initial titer of IA at 135 ± 5 mg/L. Subsequent overexpression of a native mitochondrial tricarboxylate transporter (herein designated Pk_mttA) presumably delivered cis-aconitate efficiently to the cytosol and doubled the IA production. By introducing the newly invented CRISPR-Cas9 system into P. kudriavzevii, we successfully knocked out both copies of the gene encoding isocitrate dehydrogenase (ICD), aiming to increase the availability of cis-aconitate. The resulting P. kudriavzevii strain, devoid of ICD and overexpressing Pk_mttA and At_cad on its genome produced IA at 505 ± 17.7 mg/L in shake flasks, and 1232 ± 64 mg/L in fed-batch fermentation. Because the usage of an acid-tolerant species does not require pH adjustment during fermentation, this work demonstrates the great potential of engineering P. kudriavzevii as an industrial chassis for the production of organic acid.</p

    Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production

    Get PDF
    Itaconic acid (IA), or 2-methylenesuccinic acid, has a broad spectrum of applications in the biopolymer industry owing to the presence of one vinyl bond and two acid groups in the structure. Its polymerization can follow a similar mechanism as acrylic acid but additional functionality can be incorporated into the extra beta acid group. Currently, the bio-based production of IA in industry relies on the fermentation of the filamentous fungus Aspergillus terreus. However, the difficulties associated with the fermentation undertaken by filamentous fungi together with the pathogenic potential of A. terreus pose a serious challenge for industrial-scale production. In recent years, there has been increasing interest in developing alternative production hosts for fermentation processes that are more homogenous in the production of organic acids. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH, which is a highly desirable trait by easing downstream processing. We introduced cis-aconitic acid decarboxylase gene (cad) from A. terreus (designated At_cad) into this yeast and established the initial titer of IA at 135 ± 5 mg/L. Subsequent overexpression of a native mitochondrial tricarboxylate transporter (herein designated Pk_mttA) presumably delivered cis-aconitate efficiently to the cytosol and doubled the IA production. By introducing the newly invented CRISPR-Cas9 system into P. kudriavzevii, we successfully knocked out both copies of the gene encoding isocitrate dehydrogenase (ICD), aiming to increase the availability of cis-aconitate. The resulting P. kudriavzevii strain, devoid of ICD and overexpressing Pk_mttA and At_cad on its genome produced IA at 505 ± 17.7 mg/L in shake flasks, and 1232 ± 64 mg/L in fed-batch fermentation. Because the usage of an acid-tolerant species does not require pH adjustment during fermentation, this work demonstrates the great potential of engineering P. kudriavzevii as an industrial chassis for the production of organic acid.This article is published as Sun, Wan, Ana Vila-Santa, Na Liu, Tanya Prozorov, Dongming Xie, Nuno Torres Faria, Frederico Castelo Ferreira, Nuno Pereira Mira, and Zengyi Shao. "Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production." 10 Metabolic Engineering Communications (2020): e00124. DOI: 10.1016/j.mec.2020.e00124. Posted with permission.</p
    corecore