57 research outputs found

    Phenyl acyl acids attenuate the unfolded protein response in tunicamycin-treated neuroblastoma cells.

    Get PDF
    Understanding how neural cells handle proteostasis stress in the endoplasmic reticulum (ER) is important to decipher the mechanisms that underlie the cell death associated with neurodegenerative diseases and to design appropriate therapeutic tools. Here we have compared the sensitivity of a human neuroblastoma cell line (SH-SY5H) to the ER stress caused by an inhibitor of protein glycosylation with that observed in human embryonic kidney (HEK-293T) cells. In response to stress, SH-SY5H cells increase the expression of mRNA encoding downstream effectors of ER stress sensors and transcription factors related to the unfolded protein response (the spliced X-box binding protein 1, CCAAT-enhancer-binding protein homologous protein, endoplasmic reticulum-localized DnaJ homologue 4 and asparagine synthetase). Tunicamycin-induced death of SH-SY5H cells was prevented by terminal aromatic substituted butyric or valeric acids, in association with a decrease in the mRNA expression of stress-related factors, and in the accumulation of the ATF4 protein. Interestingly, this decrease in ATF4 protein occurs without modifying the phosphorylation of the translation initiation factor eIF2α. Together, these results show that when short chain phenyl acyl acids alleviate ER stress in SH-SY5H cells their survival is enhanced

    Impact of Probiotics on the Prevention and Treatment of Gastrointestinal Diseases in the Pediatric Population

    Get PDF
    Despite the high prevalence of gastrointestinal disorders (GIDs) in infants and children, especially those categorized as functional GIDs (FGIDs), insufficient knowledge about their pathophysiology has limited both symptomatic diagnosis and the development of optimal therapies. Recent advances in the field of probiotics have made their potential use as an interesting therapeutic and preventive strategy against these disorders possible, but further efforts are still needed. In fact, there is great controversy surrounding this topic, generated by the high variety of potential probiotics strains with plausible therapeutic utility, the lack of consensus in their use as well as the few comparative studies available on probiotics that record their efficacy. Taking into account these limitations, and in the absence of clear guidelines about the dose and timeframe for successful probiotic therapy, our review aimed to evaluate current studies on potential use of probiotics for the prevention and treatment of the most common FGIDs and GIDs in the pediatric population. Furthermore, matters referring to know major action pathways and key safety recommendations for probiotic administration proposed by major pediatric health agencies shall also be discussed

    Alterations of the Hippocampal Neurogenic Niche in a Mouse Model of Dravet Syndrome

    Get PDF
    Hippocampal neurogenesis, the process by which neural stem cells (NSCs) continuously generate new neurons in the dentate gyrus (DG) of most mammals including humans, is chiefly regulated by neuronal activity. Thus, severe alterations have been found in samples from epilepsy patients and in the hippocampal neurogenic niche in mouse models of epilepsy. Reactive-like and gliogenic NSCs plus aberrant newborn neurons with altered migration, morphology, and functional properties are induced by seizures in experimental models of temporal lobe epilepsy. Hippocampal neurogenesis participates in memory and learning and in the control of anxiety and stress. It has been therefore hypothesized that part of the cognitive symptoms associated with epilepsy could be promoted by impaired hippocampal neurogenesis. We here analyze for the first time the alterations of the neurogenic niche in a novel mouse model of Dravet syndrome (DS), a genetic encephalopathy with severe epilepsy in infancy and multiple neurological comorbidities. Scn1a(WT/A1783V)mice, hereafter referred to as DS, carrying a heterozygous and clinically relevant SCN1A mutation (A1783V) recapitulate the disease at the genetic and phenotypic levels. We demonstrate that in the neurogenic niche of young adult DS mice there are fewer NSCs, they have impaired cell division and bear reactive-like morphology. In addition, there is significant aberrant neurogenesis. Newborn immature neurons migrate abnormally, and several morphological features are drastically changed. Thus, this study shows for the first time important modifications in hippocampal neurogenesis in DS and opens venues for further research on this topic.This work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) Grant/Award Numbers SAF-2015-70866-R (with FEDER Funds) and RyC-212-11137 to JE and RTI2018-097730-B-I00/MCI/AEI/FEDER, UE, and AC17/00029 (ISCIII)/FEDER to RH-A. SM-S received a Fundacion Tatiana predoctoral fellowship. OA is the recipient of a Basque Government postdoctoral fellowship

    Danio Rerio as Model Organism for Adenoviral Vector Evaluation

    Get PDF
    Viral vector use is wide-spread in the field of gene therapy, with new clinical trials starting every year for different human pathologies and a growing number of agents being approved by regulatory agencies. However, preclinical testing is long and expensive, especially during the early stages of development. Nowadays, the model organism par excellence is the mouse (Mus musculus), and there are few investigations in which alternative models are used. Here, we assess the possibility of using zebrafish (Danio rerio) as an in vivo model for adenoviral vectors. We describe how E1/E3-deleted adenoviral vectors achieve efficient transduction when they are administered to zebrafish embryos via intracranial injection. In addition, helper-dependent (high-capacity) adenoviral vectors allow sustained transgene expression in this organism. Taking into account the wide repertoire of genetically modified zebrafish lines, the ethical aspects, and the affordability of this model, we conclude that zebrafish could be an efficient alternative for the early-stage preclinical evaluation of adenoviral vectorsThis research was funded by Xunta de Galicia, Local Government, grant number ED431C 2018/28, and Gobierno de Navarra, Local Government, grant numbers 0011-1383-2018-000011 PT038 and 0011-1383-2019-000006 PT013 (XANTOGEN)S

    Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer's disease

    Get PDF
    Abstract BACKGROUND AND PURPOSE: Inhibitors of phosphodiesterase 5 (PDE5) affect signalling pathways by elevating cGMP, which is a second messenger involved in processes of neuroplasticity. In the present study, the effects of the PDE5 inhibitor, sildenafil, on the pathological features of Alzheimer's disease and on memory-related behaviour were investigated. EXPERIMENTAL APPROACH: Sildenafil was administered to the Tg2576 transgenic mouse model of Alzheimer's disease and to age-matched negative littermates (controls). Memory function was analysed using the Morris water maze test and fear conditioning tasks. Biochemical analyses were performed in brain lysates from animals treated with saline or with sildenafil. KEY RESULTS: Treatment of aged Tg2576 animals with sildenafil completely reversed their cognitive impairment. Such changes were accompanied in the hippocampus by a reduction of tau hyperphosphorylation and a decrease in the activity of glycogen synthase kinase 3β (GSK3β) and of cyclin-dependent kinase 5 (CDK5) (p25/p35 ratio). Moreover, sildenafil also increased levels of brain-derived neurotrophic factor (BDNF) and the activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus without any detectable modification of brain amyloid burden. CONCLUSIONS AND IMPLICATIONS: Sildenafil improved cognitive functions in Tg2576 mice and the effect was not related to changes in the amyloid burden. These data further strengthen the potential of sildenafil as a therapeutic agent for Alzheimer's disease

    Gene Therapy in Combination with Nitrogen Scavenger Pretreatment Corrects Biochemical and Behavioral Abnormalities of Infant Citrullinemia Type 1 Mice

    Full text link
    Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients. Keywords: citrullinemia; gene therapy; hyperammonemia; rAAV; urea cycl

    Rosiglitazone Rescues Memory Impairment in Alzheimer's Transgenic Mice: Mechanisms Involving a Reduced Amyloid and Tau Pathology

    Get PDF
    Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARγ) may exert beneficial effects in patients with mild-to-moderate Alzheimer's disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment with rosiglitazone, a high-affinity agonist at PPARγ, facilitated β-amyloid peptide (Aβ) clearance. Rosiglitazone not only reduced Aβ burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype, promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation. The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of rosiglitazone in AD patients

    Early Changes in Hippocampal Eph Receptors Precede the Onset of Memory Decline in Mouse Models of Alzheimer’s Disease

    Get PDF
    Abstract. Synapse loss occurs early in Alzheimer’s disease (AD) and is considered the best pathological correlate of cognitive decline. Ephrins and Eph receptors are involved in regulation of excitatory neurotransmission and play a role in cytoskeleton remodeling. We asked whether alterations in Eph receptors could underlie cognitive impairment in an AD mouse model overexpressing human amyloid-β protein precursor (hAβPP) with familial mutations (hAβPPswe-ind mice). We found that EphA4 and EphB2 receptors were reduced in the hippocampus before the development of impaired object recognition and spatial memory. Similar results were obtained in another line of transgenic AβPP mice, Tg2576. A reduction in Eph receptor levels was also found in postmortem hippocampal tissue from patients with incipient AD. At the time of onset of memory decline in hAβPPswe-ind mice, no change in surface expression of AMPA or NMDA receptor subunits was apparent, but we found changes in Eph-receptor downstream signaling, in particular a decrease in membrane-associated phospho-cofilin levels that may cause cytoskeletal changes and disrupted synaptic activity. Consistent with this finding, Eph receptor activation in cell culture increased phospho-cofilin levels. The results suggest that alterations in Eph receptors may play a role in synaptic dysfunction in the hippocampus leading to cognitive impairment in a model of AD

    Maternal weight, gut microbiota, and the association with early childhood behavior: the PREOBE follow-up study

    Get PDF
    Background and aim Maternal overweight and breastfeeding seem to have a significant impact on the gut microbiota colonization process, which co-occurs simultaneously with brain development and the establishment of the “microbiota-gut-brain axis”, which potentially may affect behavior later in life. This study aimed to examine the influence of maternal overweight, obesity and/or gestational diabetes on the offspring behavior at 3.5 years of age and its association with the gut microbiota already established at 18 months of life. Methods 156 children born to overweight (OV, n = 45), obese (OB, n = 40) and normoweight (NW, n = 71) pregnant women participating in the PREOBE study were included in the current analysis. Stool samples were collected at 18 months of life and gut microbiome was obtained by 16S rRNA gene sequencing. Behavioral problems were evaluated at 3.5 years by using the Child Behavior Checklist (CBCL). ANOVA, Chi-Square Test, ANCOVA, Spearman’s correlation, logistic regression model and generalized linear model (GLM) were performed. Results At 3.5 years of age, Children born to OV/OB mothers showed higher scores in behavioral problems than those born to NW mothers. Additionally, offspring born to OB mothers who developed gestational diabetes mellitus (GDM) presented higher scores in attention/deficit hyperactivity and externalizing problems than those born to GDM OV/NW mothers. Fusicatenibacter abundance found at 18 months of age was associated to lower scores in total, internalizing and pervasive developmental problems, while an unidentified genus within Clostridiales and Flavonifractor families abundance showed a positive correlation with anxiety/depression and somatic complaints, respectively. On the other hand, children born to mothers with higher BMI who were breastfed presented elevated anxiety, internalizing problems, externalizing problems and total problems scores; likewise, their gut microbiota composition at 18 months of age showed positive correlation with behavioral problems at 3.5 years: Actinobacteria abundance and somatic complaints and between Fusobacteria abundance and withdrawn behavior and pervasive developmental problems. Conclusions Our findings suggests that OV/OB and/or GDM during pregnancy is associated with higher behavioral problems scores in children at 3.5 years old. Additionally, associations between early life gut microbiota composition and later mental health in children was also found.Andalusian Government, Economy, Science and Innovation Ministry P06-CTS-02341Spanish Government SB2010-0025EU Project FP7 MyNewGut KBBE-2013-7 613979Ministry of Economic Transformation, Industry, Knowledge, and University of the Junta de Andalucia (Andalusian Plan for Research, Development and Innovation, PAIDI 2020)Institute of Health Carlos III (ISCIII) CD21/0018

    Epilepsy and neuropsychiatric comorbidities in mice carrying a recurrent Dravet syndrome SCN1A missense mutation

    Get PDF
    Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 °C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. 18F-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1aWT/A1783V mice. We conclude that the Scn1aWT/A1783V model is a robust research platform for the evaluation of new therapies against DS
    • …
    corecore