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Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARg) may exert beneficial effects in

patients with mild-to-moderate Alzheimer’s disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs

has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment

with rosiglitazone, a high-affinity agonist at PPARg, facilitated b-amyloid peptide (Ab) clearance. Rosiglitazone not only reduced Ab
burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and

entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably

corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype,

promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation.

The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired

recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of

rosiglitazone in AD patients.
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INTRODUCTION

Alzheimer’s disease (AD), the most common form of
dementia in the elderly, is characterized by the deposition
of extracellular neuritic plaques, mainly composed of
fibrillar b-amyloid (Ab) peptide, and the formation of
intracellular tangles containing hyperphosphorylated tau
(Selkoe, 2001). Other pathological features highly related to
synaptic deficits include dystrophic neurites, closely asso-
ciated with intracerebral amyloid deposits of AD patients
and preferentially positive for phosphorylated forms of tau
(Su et al, 1998). Ab peptide is derived from the sequential
proteolytic cleavage of amyloid precursor protein (APP) by
b-secretase and presenilin-dependent g-secretase to yield
Ab (Bayer et al, 2001). According to the amyloid cascade
hypothesis (Hardy and Selkoe, 2002), Ab is the starting
point for a sequence of pathogenic events, such as
tau hyperphosphorylation and neuroinflammation, that

contribute to synaptic dysfunction and ultimately causes
dementia. Although controversial, reducing Ab would
consequently contribute to ameliorate AD symptoms.

The brain possesses robust intrinsic Ab clearance
mechanisms (Tanzi et al, 2004). Ab peptides are proteoly-
tically degraded within the brain mainly by neprilysin
(NEP) (Iwata et al, 2000) and insulin-degrading enzyme
(IDE) (Kurochkin and Goto, 1994). It has been recently
reported that ApoE facilitates the proteolytic clearance of
soluble Ab from the brain both within microglia by NEP
and extracellularly by IDE, in a process dependent on ApoE
isoform and its lipidation level, where the cholesterol
transporter ABCA1 and the nuclear liver X receptors (LXR)
have a major role (Jiang et al, 2008). Activated microglia
secrete different proinflammatory factors, an effect parti-
cularly observed in close proximity to the amyloid plaques
(Zipp and Aktas, 2006). However, activated microglia also
express receptors that promote the clearance and phagocy-
tosis of Ab, such as CD36 and receptor for advanced
glycation endproducts (RAGE) (Yan et al, 1996; El Khoury
et al, 1998), and may restrict amyloid plaque formation by
phagocytosing Ab (Simard et al, 2006). It seems that, as
AD progresses, the phenotype of microglia changes and
these cells become more proinflammatory and lose their
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Ab-clearing capabilities, resulting in reduced Ab uptake and
degradation.

In addition to aging, which is the most obvious risk factor
for the disease, epidemiological studies indicate that type 2
diabetes is associated with an increased risk of AD
(Biessels and Kappelle, 2005). The thiazolidinediones,
widely used in the treatment of type 2 diabetes, act as
agonists at the nuclear receptor peroxisome proliferator-
activated receptor gamma (PPARg) (Lehmann et al, 1995), a
ligand-inducible transcription factor that decreases insulin
resistance and regulates lipid metabolism and inflamma-
tion. Although controversial (see ADAPT Research Group,
2008), epidemiological studies suggest that non-steroidal
anti-inflammatory drugs (NSAID) may reduce AD risk by
inhibiting inflammatory responses in the AD brain, an
effect linked to the ability of these drugs to stimulate PPARg
(Lehmann et al, 1997; in T’ Veld et al, 2001; Landreth and
Heneka, 2001). On this basis, the effects of agonists at
PPARg on the amyloid cascade have been studied in vitro
(Camacho et al, 2004; D’abramo et al, 2005), and their
efficacy in AD mouse models has been explored (Sundar-
arajan et al, 2006). Clinical studies suggest beneficial effects
of PPARg agonists in patients with mild to moderate AD
(Watson et al, 2005; Risner et al, 2006), but the mechan-
ism(s) for the potential therapeutic interest of PPARg
agonists in AD has not yet been elucidated. We here report
that chronic treatment with rosiglitazone, a high-affinity
PPARg agonist, improves recognition and spatial memory
in a mouse model of AD and reduces the amyloid and tau
pathology.

MATERIALS AND METHODS

Animals and Drug Treatments

Transgenic mice overexpressing human amyloid precursor
protein (hAPP) with the Swedish (K670N/M671L) and
Indiana (V717F) familial AD mutations under control of
the PDGF b-chain promoter were used (J20 line) (Mucke
et al, 2000). The mice were on an inbred C57BL/6J genetic
background. Animals were housed 4–5 per cage with free
access to food and water, and maintained in a temperature-
controlled environment on a 12 h light–dark cycle. All
procedures were carried out in accordance with the
European and Spanish regulations (86/609/CEE; RD1201/
2005). This study was approved by the Ethical Committee of
the University of Navarra (no. 076/06).

We treated 9-month-old transgenic mice by oral gavage
with rosiglitazone maleate (Avandia, GSK, Brentford, UK)
as a suspension in sterile water at a dose of 5 mg/kg/day or
with vehicle (n¼ 11–12 animals per group). Only male mice
were used in this work. Age-matched non-transgenic mice
(Non-Tg) received the vehicle. In all cases, animals were
killed 24 h after the last administration. The brains were
removed and immediately frozen on dry ice before
dissection. Some animals were perfused transcardially with
paraformaldehyde for immunohistochemistry.

Behavioral Procedures

Animals underwent the object recognition test after 4 weeks
of treatment. The apparatus for this test consisted of a dark

open box (50� 35� 50 cm high), illuminated by a 60 W
lamp suspended 120 cm above the box. The objects
consisted of red rectangular prisms (2� 2� 8 cm high)
and white pyramids (5� 5� 5 cm high). These objects could
not be displaced by the mice. In the week preceding testing,
the animals were handled daily and adapted to the room in
which the behavioral procedures were being carried out. The
test was carried out as described elsewhere (Schiapparelli
et al, 2006). At 1 h before testing, the mice were allowed to
explore the apparatus without objects for 5 min. After
habituation, two familiarization sessions were given (T1 and
T2 10 min apart), in which the animals were left to explore
for 10 min two identical objects (red prisms) that were
placed in opposite sides of the apparatus 10 cm from the
sidewall. The choice trial (T3), in which memory retention
was tested, was given 24 h after T2. In this session, two
objects were presented, one of the prisms was used in
familiarization session (T1 and T2) and other was different
in shape and color; therefore the mice were re-exposed to a
familiar (F) and a new object (N). Exploration was defined
as directing the nose to an object at a distance p2 cm and/or
touching the object with the nose. To avoid the presence of
olfactory trails, the apparatus and the objects were
thoroughly cleaned with ethanol after each trial. The time
spent by the animals in exploring each object was recorded
manually by using a stopwatch. The reaction to a new object
during T3 was measured by calculating the discrimination
index (DI): time spent exploring the new object over total
exploration time. Consequently, a ratio of 0.5 reflects equal
exploration of the familiar and the new object, indicating no
learning retention.

We also used the Morris water maze (MWM) test to
evaluate the spatial memory function in response to
treatment with rosiglitazone in J20 mice, as previously
described (Westerman et al, 2002). Groups of animals
underwent spatial reference learning in the MWM test
after 4 and 16 weeks of treatment. The water maze was a
circular pool (diameter 1.45 m) filled with water maintained
at 201C and made opaque by the addition of powdered skim
milk. Mice underwent visible-platform training for 3
consecutive days (eight trials per day) using a platform
raised above the surface of the water. No visible cues were
present during this phase. This was followed by the hidden-
platform training (with all visible cues present) during
which mice were trained to locate a platform in the opposite
quadrant and submerged 1 cm beneath the surface for 8
consecutive days (four trials per day). In both the visible-
and hidden-platform versions, mice were randomly placed
in selected locations, facing toward the wall of the pool to
eliminate the potentially confounding contribution of
extramaze spatial cues. Each trial was terminated when
the mouse reached the platform or after 60 s, whichever
came first. Mice failing to reach the platform were guided
onto it. After each hidden-platform trial, mice remained on
the platform for 20 s. At 20 h after the 12th, 24th, and 32nd
trials, all mice were subjected to a probe trial in which they
swam for 60 s in the pool with no platform. Mice were
monitored by a camera mounted in the ceiling directly
above the pool, and all trials were recorded using an HVS
water maze program for subsequent analysis of escape
latencies, swimming speed, path length, and percent time
spent in each quadrant of the pool during probe trials
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(analysis program WaterMaze3, Actimetrics, Evanston, IL,
USA). All experimental procedures were performed blind to
groups.

Determination of Ab Levels

Cortical Ab42 and Ab40 levels were measured by using a
sensitive sandwich ELISA kit from Biosource (Camarillo,
CA, USA). In brief, tissue was weighed and homogenized in
8 volumes of ice-cold guanidine buffer (5 M guanidine HCl/
50 mM Tris-HCl pH 8.0) and diluted 1 : 20. The homo-
genates were mixed overnight at room temperature and
were diluted 1 : 50 in Dulbecco’s phosphate-buffered saline
containing 5% BSA and 0.03% Tween-20 (DPBS–BSAT),
followed by centrifugation at 16 000 g for 20 min at 41C. The
supernatant was diluted with standard diluent buffer
supplemented with protease inhibitor cocktail (Complete
Protease Inhibitor Cocktail, Roche Diagnostics, Mannheim,
Germany) and 1 mM PMSF. A total of 50 ml were loaded
onto ELISA plates in duplicate, and the manufacturer’s
instructions were followed. The Ab standards were prepared
in a buffer with the same composition of final tissue
samples.

Production of Protein Extracts

For APP-derived fragments determination, cortical tissue
was homogenized in a buffer containing SDS 2%, Tris-HCl
(10 mM, pH 7.4), protease inhibitors (1 mM PMSF and
Complete Protease Inhibitor Cocktail, Roche Diagnostics)
and phosphatase inhibitors (0.1 mM Na3VO4 and 1 mM
NaF). The homogenates were sonicated for 2 min and
centrifuged at 100 000 g for 1 h. Aliquots of the supernatant
were frozen at �801C and protein concentration was
determined by the Bradford method using the Bio-Rad
protein assay (Bio-Rad, Hercules, CA, USA).

Western Blotting

For Western blot analysis of APP-derived fragments,
aliquots of the protein extracts were mixed with XT sample
buffer plus XT reducing agent (Bio-Rad) and boiled for
5 min. Proteins were separated in a Criterion precast Bis-
Tris 4–12% gradient precast gel (Bio-Rad) and transferred
to a PVDF membrane with 0.2 mm removal rating (Hybond
LFP, Amersham Biosciences, Little Chalfont, UK). The
membranes were blocked with 5% milk, 0.05% Tween-20 in
Tris-buffered saline (TBS) followed by overnight incubation
with the following primary antibodies: mouse monoclonal
6E10 (amino acids 1–16 of Ab peptide, 1 : 1000, Covance,
San Diego, CA, USA), rabbit polyclonal anti-APP C-terminal
(amino acids 676–695) (1 : 2000, Sigma, St Louis, MO, USA)
and mouse monoclonal anti-b-actin (1 : 100 000, Sigma).
After two washes in TBS/Tween20 and one wash in TBS
alone, immunolabeled protein bands were detected by using
HRP-conjugated anti-rabbit or anti-mouse antibody
(1 : 5000, Dako, Denmark) following an enhanced chemilu-
miniscence system (ECL, Amersham Biosciences), and
autoradiographic exposure to Hyperfilm ECL (Amersham
Biosciences). Signals quantification was carried out using
Quantity One v.4.6.3. software (Bio-Rad).

Tissue Processing for Immunohistochemistry

Under xylazine/ketamine anesthesia, animals were perfused
transcardially with saline and 4% paraformaldehyde in
phosphate buffer (PB). After perfusion, brains were removed,
post-fixed in the same fixative solution for 1 h at room
temperature and cryoprotected in 30% sucrose solution in PB
overnight at 41C. Microtome sections (30-mm-thick) were cut
coronally, collected free-floating and stored in 30% ethylene
glycol, 30% glycerol, and 0.1 M PB at �201C until processed.

For immunofluorescence, five–six free-floating tissue sec-
tions of four animals per group were processed. Brain sections
were washed (3� 10 min) with PBS 0.1 M (pH 7.4) and
incubated in blocking solution (PBS containing 0.3% Triton X-
100, 0.1% BSA and 2% normal goat serum) for 2 h at room
temperature. For 6E10 immunostaining, sections were incu-
bated in 70% formic acid for 10 min to expose the epitope.
Primary and secondary antibodies were diluted in the blocking
solution. Sections were incubated with the primary antibody
for 24 h at 41C, washed with PBS and incubated with the
secondary antibody for 2 h at room temperature, protected
from light. The primary antibody used was mouse monoclonal
6E10 (amino acids 1–17 of Ab peptide, 1 : 200, Chemicon,
Temecula, CA, USA). Secondary antibody used was Alexa Fluor
488 goat anti-mouse, highly crossadsorbed (1 : 200, Invitrogen–
Molecular Probes, Eugene, OR, USA). For better visualization
of nuclei, sections were rinsed 15 s in the DNA marker TOPRO-
3 (Invitrogen–Molecular Probes) working concentration 4mM
in PBS, and then washed 2 min in PBS before mounting
(Martin et al, 2005). Sections were mounted on super frost plus
slides, air dried for 24 h, rinsed in toluene (2� 5 min), and
coverslipped with Immu-Mount (Thermo Scientific, Pittsburgh,
PA, USA) mounting medium. To ensure comparable im-
munostaining, sections were processed together under identical
conditions. For the assessment of non-specific primary
immunostaining, some sections from each experimental group
were incubated without the primary antibody; in this case
no immunostaining was observed. Non-specific secondary
immunostaining was also evaluated by incubating sections with
primary and its non-respective secondary antibody; again, no
immunostaining was observed. Fluorescence signals were
detected with confocal microscope LSM 510 Meta (Carl Zeiss,
Oberkochen, Germany).

For p-tau staining, slides were treated with methanol and
H2O2 to inhibit endogenous peroxidase activity, followed by
blocking with 3% milk in TBS. Sections were incubated
overnight with primary antibody AT8 (1 : 50, Pierce, Woburn,
MA, USA) or PHF1 (1 : 100, gift from Dr J Avila, CBM, Madrid,
Spain) at 41C. After washing, sections were incubated
sequentially with biotinylated goat anti-mouse secondary
antibody (1 : 500, DakoCytomation, Glostrup, Denmark) for
2 h, an ABC kit immunosassay detection systems (Vector,
Burlingame, CA, USA) for 90 min, and developed with a DAB
(3,30-diaminobenzidine) solution (Peroxidase substrate kit,
Vector). Sections were then washed in water before dehydrat-
ing and mounting in DPX (BDH).

Quantitative Real-Time PCR

Total RNA was extracted from prefrontal cortex using
Trizol (Sigma), and was reverse-transcribed into cDNA.
Real-time quantitative PCR assays were performed in
triplicate in the presence of SYBRgreen (Sigma) to detect
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the amplification products. Samples were analyzed simulta-
neously for b-actin as the internal control using an ABI
Prism 7300 sequence detector (Applied Biosystems, Foster
City, CA, USA). Data were analyzed using Sequence
Detection software v. 3.0. (Applied Biosystems). Sequences
for quantitative PCR primers are indicated in Table 1.

Statistical Analysis

Results, reported as means±SEM, were analyzed with the
SPSS package for Windows, version 15.0 (SPSS, Chicago, IL,
USA). One-way ANOVA, followed by Sheffé post-hoc test
was used for behavioral data, and ANOVA followed by
Tukey’s hsd post-hoc test was used for quantitative PCR
results. In experiments where two groups were compared,
results were analyzed using Student’s t-test.

RESULTS

Rosiglitazone Treatment Ameliorates Memory Deficits
in the Object Recognition and MWM Tests

Transgenic J20 mice showed memory impairment at 10
months of age in the object recognition test, the discrimina-
tion index being significantly lower than in non-transgenic
animals (0.46±0.08 vs 0.77±0.12). After 4 weeks of daily
treatment, rosiglitazone reversed this deficit, and the
discrimination index was similar to the non-transgenic
group (0.77±0.07) (Figure 1).

At this age, mice also underwent the MWM. In this test,
all experiments with transgenic animals and non-transgenic
littermates were carried out on a blind basis. No significant
differences among groups were found during the days of
visible platform training (not shown) indicating absence of
effects of transgene and/or rosiglitazone. In the spatial
component of the test (invisible platform), the drug failed to

improve spatial memory, escape latencies being higher than
in non-transgenic mice (Figure 2a). In the probe trial, which
provides a putative measure of memory retention, no
improvement was either found (not shown).

The results in the MWM suggested that a 4-week
treatment with rosiglitazone was not enough to restore the
hippocampus function for an accurate performance. Drug
treatment was then continued for 12 additional weeks. After
that, animals underwent another MWM. Escape latencies of
rosiglitazone-treated animals were then similar to those of
non-transgenic mice in the invisible platform, and in both
cases latencies were much lower than in saline-treated J20
mice (Figure 2b). It has been suggested that the sensitivity
of the MWM test can be increased by giving shorter probe
trials (Gerlai, 2001); we thereby analyzed the performance of
mice during the first 15 and 60 s of every probe trial. In the
probe trial, saline-treated transgenic mice spent a percent
time in the target quadrant significantly lower than the
drug-treated and the non-transgenic group (Figure 2c).

Rosiglitazone Reduces Brain Ab Levels and Ab Plaque
Deposition

Cortical levels of Ab40 and Ab42 were determined in
transgenic mice by ELISA after 16 weeks of rosiglitazone
treatment. As shown in Figure 3a, rosiglitazone decreased
Ab42 levels by B57% and also Ab40 levels by B72%.

Western blot analysis was carried out in cortical protein
extracts from transgenic animals. Using 6E10 antibody, we
detected in blots a band at B56 kDa, corresponding in size
with the Ab dodecamer, termed Ab*56, which correlates
with cognitive deficits in transgenic mice (Lesne et al, 2006).
Rosiglitazone decreased the intensity of this band by B36%
(Figure 3b).

Amyloid plaques are already formed in hippocampal
subfields of most J20 mice at 5–7 months of age and are

Table 1 Primers Used in this Work

Gene name Gene Bank ID Forward primer (50–30) Reverse primer (50–30)

Abca1 NM_013454 GAAGCCAGTTGTGACAAAACTAAATT GCAACACTGTGGTGGCTTCA

ApoE NM_009696 CCTGAACCGCTTCTGGGAT GCTCTTCCTGGACCTGGTCA

Arg1 NM_007482 CACTCCCCTGACAACCAGCT AAGGACACAGGTTGCCCATG

b-Actin NM_007393 CCTGACAGACTACCTCATGAAG CCATCTCTTGCTCGAAGTCTAG

CD36 NM_007643 GAACCACTGCTTTCAAAAACTGG TGCTGTTCTTTGCCACGTCA

Cox1 NM_008969 CTACCAGTGCTAGCCGCAGG TGGTAGAGAATTGGGTCCCCT

Cox2 NM_011198 TGTATCCCCCCACAGTCAAAGA ACCAGACCAAAGACTTCCTGCC

FIZZ1 NM_020509 ATCGTGGAGAATAAGGTCAAGG GGGATAGTTAGCTGGATTGGCA

IDE NM_031156 GAAGACAAACGGGAATACCGTG CCGCTGAGGACTTGTCTGTG

IL-1b NM_008361 ACCTGTCCTGTGTAATGAAAGACG TGGGTATTGCTTGGGATCCA

LXRa NM_013839 GGCTGCAGGTGGAGTTCATC AATGAGCAGAGCAAACTCAGCAT

LXRb NM_009473 GATCCTCCTCCAGGCTCTGAA TGCGCTCAGGCTCATCCT

MHCIIa NM_010378 GCGGTGCTCGAAGCATCTAC GTGGTTCTGTGGGTCATCCC

MRC1 NM_008625 ATCAATCCCTCAGCAAGCGAT CCACCACTGATTAGGGCAGC

NEP NM_008604 GCAGCCTCAGCCGAAACTAC CACCGTCTCCATGTTGCAGT

TNFa NM_013693 GCACAGAAAGCATGACCCG GCCCCCCATCTTTTGGG

YM1 NM_009892 TGTTCTGGTGAAGGAAATGCG CGTCAATGATTCCTGCTCCTGT

Abbreviations: IDE, insulin-degrading enzyme; LXR, liver X receptors; NEP, neprilysin.
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abundant in all of them when they are 8–10 months old
(Mucke et al, 2000). The animals used here, which were
9-months old at the beginning of the treatment, should
therefore have numerous amyloid plaques in the hippocampus
and cerebral cortex. Using 6E10 antibody, which recognizes the
amino-terminal region of Ab, saline-treated animals showed a
high number of these plaques in the three brain areas analyzed
(prefrontal and entorhinal cortex, and hippocampus). In
rosiglitazone-treated transgenic mice, plaques were virtually
undetectable in the three studied regions (Figure 4).

Likewise, higher magnification of the hippocampal
pyramidal cell layer (CA1) revealed that rosiglitazone
lowered the levels of intracellular Ab compared with
saline-treated mice, suggesting that the drug may promote
not only the degradation of amyloid plaques, but also the
clearance of soluble intracellular Ab (Figure 4, insets).

Effect of Rosiglitazone on APP Processing

To determine whether rosiglitazone decreased Ab levels by
changing APP processing, we analyzed the levels of the
APP-derived fragments by western blot, using the anti-APP
C-terminal antibody. We found that the levels of total hAPP,
the carboxy-terminal fragment (CTF) C83, and aAPPs were
slightly lower in rosiglitazone-treated than in saline-treated
mice (Figure 5). As shown also in Figure 5, the levels of CTF
C99, precursor of the Ab peptide, did not change,
suggesting that rosiglitazone did not reduce Ab production
by changing the amyloidogenic APP processing.

Rosiglitazone Reduces p-Tau Aggregates

We also analyzed in transgenic mice another pathological
hallmark of AD, the presence of neuropil threads containing
phosphorylated tau. To this end, we carried out immunohis-
tochemical studies in brain slices using AT8 and PHF1
antibodies, which recognize different forms of phosphorylated
tau. Although tau pathology has not been explicitly described

in these animals, we observed AT8 and PHF1 signals, probably
corresponding to the presence of dystrophic neurites (Figure 6a
and b). It should be noted that PHF1 signals were also observed
in a different line of APP transgenic mice without other overt
signs of tau pathology (Cancino et al, 2008). Saline-treated
transgenic J20 mice showed p-tau-positive neuropil threads in
the hippocampus using the AT8 antibody (Figure 6a). These
mice also showed neuropil threads in the same region using the
PHF1 antibody, but staining was less pronounced (Figure 6b).
Non-transgenic mice did not show any p-tau staining (Figure
6a and b). Rosiglitazone clearly decreased the number of p-tau
aggregates in transgenic mice (Figure 6c).

Effects of Rosiglitazone on Ab Degradation

By using quantitative PCR, we first analyzed the expression
of the two main Ab-degrading enzymes, NEP, and IDE. The
expression of both enzymes did not change in any
experimental group (Figure 7a).

Recently, it has been described that ApoE facilitates the
proteolytic clearance of soluble Ab from the brain within
microglia by NEP and extracellularly by IDE. The ability of
ApoE to promote Ab degradation is dependent upon the
ApoE isoform and its lipidation status (Jiang et al, 2008).
Accordingly, we studied the expression of ApoE, Abca1, and
LXRs. ApoE expression was decreased in the two groups of
transgenic mice compared with the non-transgenic group
(Figure 7b). Rosiglitazone did not modify the expression of
ApoE, but increased the expression of Abca1 (Figure 7b),
independent of expression changes in LXRs (data not
shown). These results suggest that the drug may increase
the lipidation of ApoE through an overexpression of Abca1.

Rosiglitazone Switches on the Activated Microglial
Phenotype

Microglial activation is an important pathogenic component
of neurodegenerative diseases and also one of the major

Figure 1 Reversal by daily treatment for 4 weeks with rosiglitazone (Rosi, 5 mg/kg p.o.) of the memory deficit shown by 10-month-old transgenic mice
(J20 line) in the object recognition test. Values are means±SEM (n¼ 11–12 animals per group). ***Po0.001 vs non-transgenic (Non-Tg + sal) mice;
wwwPo0.001 vs saline-treated transgenic mice (ANOVA followed by Scheffé’s t-test).
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mechanisms of amyloid clearance. To elucidate whether
rosiglitazone could modify microglial activation, we exami-
ned its phenotype by immunochemistry using the CD11b
antibody, and the expression of proinflammatory factors.

As shown in Figure 8a, non-transgenic mice displayed a
resting morphology, whereas saline-treated J20 mice
displayed an activated microglia with an amoeboid
morphology characteristic of a classic cytotoxic phenotype

Figure 2 Effect of daily treatment with rosiglitazone (Rosi, 5 mg/kg p.o.) for 4 weeks or 4 months on performance of J20 mice in the Morris water maze.
(a) Escape latency in the invisible-platform training after 4 weeks of daily treatment. Both groups of transgenic mice showed significantly longer escape latencies in
the invisible-platform training when compared with the non-transgenic (Non-Tg) littermate controls. (b) After 4 months of treatment, rosiglitazone ameliorated
spatial memory in transgenic mice; escape latencies in the invisible-platform training were not different from those of non-transgenic mice. (c) Percentage time
spent in the right quadrant during the 15 and 60 s probe trials after 4 months of treatment. Saline-treated J20 mice performed significantly worse than
rosiglitazone-treated or Non-Tg littermate controls in the three 15- and 60-s probe trials. Values are means±SEM (n¼ 11–12 animals per group). *Po0.05,
**Po0.01, ***Po0.001 vs Non-Tg + sal, wPo0.01, wwPo0.01, wwwPo0.001 vs J20+ sal (ANOVA followed by Scheffé’s t-test).
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(Figure 8a), along with the overexpression of proinflamma-
tory factors such as TNFa and Cox2 (Figure 8b). Rosigli-
tazone-treated transgenic mice displayed a different

morphology (Figure 8a), similar to the resting phenotype,
accompanied by a reduction in the expression of proin-
flammatory factors, and an induction of YM-1 and FIZZ-1
(Figure 8b), considered a marker of alternative differentia-
tion in peripheral macrophages (Edwards et al, 2006). These
animals also showed an increased expression of CD36
(Figure 9), a receptor that internalizes Ab inside microglia
increasing the Ab phagocytic capabilities.

DISCUSSION

In this study, we report that rosiglitazone, a high-affinity
agonist at PPARg, promotes Ab clearance, not only
decreasing Ab burden in the brain but, of particular
interest, eliminating also the abundant amyloid plaques in
the hippocampus and entorhinal cortex of Alzheimer’s
transgenic mice overexpressing mutant APP. Rosiglitazone
switched on the activated microglial phenotype, promoting
its phagocytic capability, reducing the expression of
proinflammatory factors and increasing those of alternative
differentiation. The decreased amyloid pathology may
account for the reduction of neuropil threads containing
phosphorylated tau and for the rescue of impaired
recognition and spatial memory in the transgenic mice.

After 4 weeks of treatment, object recognition perfor-
mance but not spatial memory was improved in rosiglita-
zone-treated transgenic mice. It has been suggested that
spatial memory requires a more complete hippocampal
function than does recognition memory (Broadbent et al,
2004) so it seems that the 4-week treatment was enough
to improve the function in different brain areas related
to recognition memory but not in the hippocampus.

Figure 3 Daily treatment with rosiglitazone for 4 months markedly
reduced b-amyloid (Ab) levels. (a) Levels of Ab42 and Ab40, determined
by ELISA in cortical tissue, were decreased by B55 and B70%,
respectively, after chronic treatment with the drug in transgenic J20 mice.
(b) Rosiglitazone also reduced the levels of the Ab dodecamer, Ab*56,
quantified by Western blot. Values are means±SEM (n¼ 7–8 animals per
group). wwPo0.01 vs J20 + sal (Student’s t-test).

Figure 4 Representative images of the immunofluorescent staining in different brain regions for 6E10 antibody and the DNA marker TOPRO-3. (a–c)
Multiple extracellular deposits of b-amyloid (Ab) amyloid peptide were detected in saline-treated J20 mice. Rosiglitazone almost completely reduced staining
of Ab deposits in the three areas studied: (d) prefrontal and (f) entorhinal cortex, and (e) hippocampus (scale bar¼ 100 mm). Small boxes in b and e are
insets at higher magnification of hippocampal pyramidal cell layer CA1 (scale bar¼ 10 mm), showing the reduction in the intracellular Ab labelling
(Representative sections of n¼ 4 animals per group).
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A longer-lasting rosiglitazone treatment also rescued
impaired spatial memory. These effects are probably of
central origin as rosiglitazone passes readily into the brain
(Strum et al, 2007). We and others have reported an
attenuation of learning and memory deficits of APP
transgenic mice in the radial maze and object recognition
tests after chronic rosiglitazone administration (Pedersen
et al, 2006; Escribano et al, 2009). However, it was also
recently reported that, at variance with the present results,
APP mice treated with pioglitazone for 2 months did not
improve their spatial memory in the MWM (Nicolakakis
et al, 2008). The difference of the latter study with this work
may simply depend on the different PPARg agonists used
and also on the duration of the treatment.

The treatment for 4 months with rosiglitazone reduced
the levels of Ab by 50–70%, eliminated almost completely
the intraneuronal Ab, which has a major role in the
pathogenesis of AD (Wirths et al, 2004), and also decreased
the levels of the Ab dodecamer, which seems to be directly
related with the appearance of cognitive deficits (Lesne et al,
2006). It is interesting to note that amyloid plaques were
virtually nonexistent in the hippocampus and areas of the
cerebral cortex after the chronic treatment. The great
reduction in amyloid pathology may account for the rescue
of memory in these mice. In previous studies, controversial
effects have been reported on the effect of treatment with
PPARg agonists on amyloid burden in AD mouse models. In
keeping with our results, Toledo and Inestrosa (2010)
recently reported that chronic rosiglitazone treatment of
transgenic APP/PS1 mice reduced Ab aggregates and Ab
oligomers and also restored spatial memory impairment
induced by amyloid burden. In a study using Tg2576 mice it
was found that rosiglitazone reduced by B25 % Ab42 levels

without affecting Ab40 levels or amyloid plaques (Pedersen
et al, 2006). In the latter study, it was reported that
rosiglitazone attenuated the reduction of IDE mRNA
observed in Tg2576 mice in the hippocampus but not in
the frontal cortex, wherein a decrease of Ab42 but not of
Ab40 levels was found (Pedersen et al, 2006). It should,
however, be noted that IDE degrades to the same extent
Ab40 and Ab42 (Vekrellis et al, 2000). On the other hand, it
is unclear that increased NEP levels may be beneficial to
amyloid pathology, as this enzyme neither degrades Ab
oligomers nor restores memory function in an AD mouse
model (Meilandt et al, 2009).

In another study, where Tg2576 mice were treated with
ibuprofen or pioglitazone, both drugs reduced Ab40 levels,
but Ab42 levels and the number of amyloid plaques only
were decreased with ibuprofen (Yan et al, 2003). Con-
versely, the treatment with the same drugs of APPV717I
mice did not modify Ab40 levels, and Ab42 levels and
plaques only were reduced with pioglitazone (Heneka et al,
2005).

The striking amelioration of amyloid pathology here
found could be because of a lower production of Ab.
However, rosiglitazone did not modify the levels of C99,
precursor of the Ab peptide, suggesting that this was not the
main mechanism. Conversely, the treatment for 7 days with
pioglitazone (target dose of 40 mg/kg) reduced C99 levels in
APP mice with the London mutation, an effect accompanied
by a decrease in BACE1 gene transcription (Heneka et al,
2005; Sastre et al, 2006). Not only the different drug and
schedule of treatment but also the different line of
transgenic mice in which b- and g-secretase processing
are not favored to the same extent may account for the
difference (Van Dam and De Deyn, 2006). It is of note that

Figure 5 Effect of chronic treatment with rosiglitazone for 4 months on amyloid precursor protein (APP) processing. The drug decreased the levels of
total APP, aAPPs and the carboxy-terminal fragment (CTF) C83. However, the levels of the CTF C99, precursor of Ab, were not affected. Values are
means±SEM (n¼ 7–8 animals per group). wwwPo0.001 vs J20 + sal (Student’s t-test).
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in vitro studies also showed distinct effects of PPARg
overexpression/activation on BACE1 levels and activity,
decrease or no change, in spite of a reduction in Ab levels
(Camacho et al, 2004; Sastre et al, 2006).

Dystrophic neurites are closely associated with amyloid
deposits, and are correlated with AD dementia scores
(Mckee et al, 1991; Selkoe, 1994). In this study, neuropil
threads in J20 mice were clearly immunostained with anti-
phosphorylated tau antibodies (AT8 and PHF1), and
rosiglitazone markedly reduced the immunostaining in
parallel with the rescue of impaired recognition and spatial
memory in the transgenic mice. Recently, it has been
described that a reduction in tau expression prevents the
cognitive deficit in mice overexpressing APP despite high
levels of Ab, supporting the role of tau in the amyloid
pathogenic cascade (Roberson et al, 2007). In accordance
with our findings, the treatment with troglitazone, another
thiazolidinedione, of cells expressing four-repeat tau,
significantly reduced tau phosphorylation (D’abramo et al,
2006).

The observed reduction in amyloid and tau pathology
after rosiglitazone could be because of an increase in the
brain clearance ability. Indeed, a clearance mechanism for
Ab peptide after PPARg activation was already described in
neuronal and glial cultures (Camacho et al, 2004). Using

quantitative PCR, we studied the expression of the two main
proteolytic enzymes that degrade Ab, NEP, and IDE.
However, the expression of both enzymes was not altered
in any experimental group.

ApoE facilitates the proteolytic degradation of Ab by NEP
and IDE, the degradation being enhanced when ApoE is
lipidated (Jiang et al, 2008). Genetic loss of the lipid
transporter Abca1 impairs ApoE lipidation and promotes
amyloid deposition in AD mouse models (Wahrle et al,
2008). Abca1 catalyses the ATP-dependent transport of
cholesterol and phospholipids from the plasma membrane
to lipid-free apolipoproteins including ApoE. We found that
rosiglitazone significantly increased the expression of Abca1
in APP mice. This increase could lead to a more marked
lipidation of ApoE in rosiglitazone-treated mice, facilitating
Ab degradation. In keeping with these data, increased
expression of Abca1, without modifications in ApoE levels,
appears to be sufficient for the reduction in Ab levels in
PDAPP transgenic mice (Wahrle et al, 2008). On the other
hand, deficiency of LXRs, transcription factors that promote
Abca1 and ApoE expression, exacerbates AD pathology in
vivo, whereas treatment of Alzheimer’s mice with synthetic
LXR agonists reduces amyloid load and improves cognitive
performance (Fan et al, 2009). Here, we failed to observe
changes in LXRs expression after rosiglitazone treatment.
Nevertheless, it has been observed, using microarray and
northern blot analyses, that PPARg activation may directly
increase the expression of Abca1 (Hodgkinson and Ye,
2003). These results tend to support a role for ApoE in the
effects of PPARg agonists in AD patients. Indeed, rosigli-
tazone failed to improve cognition in patients with the
ApoE e4 allele (Risner et al, 2006).

Figure 6 Chronic rosiglitazone treatment for 4 months reduced
phosphorylated tau in transgenic mice (J20 line). (a) Representative images
of p-tau aggregates in the hippocampus using the AT8 antibody. No p-tau
staining was observed in non-transgenic (Non-Tg) mice. Numerous
aggregates were observed in saline-treated transgenic mice and a marked
reduction was found after Rosiglitazone treatment. (b) Representative
images of p-tau aggregates in the hippocampus using the PHF1 antibody.
The results obtained were similar to those depicted in a. (Scale
bar¼ 25mm). (c) Number of p-tau aggregates using AT8 or PHF1
antibody. Quantitative data are means±SEM (n¼ 4 animals per group).
wPo0.05, wwwPo0.001 vs J20 + sal (Student’s t-test).

Figure 7 Effect of chronic rosiglitazone treatment on b amyloid (Ab)-
degrading mechanisms. (a) The expression of the two main Ab-degrading
enzymes, neprilysin (NEP), and insulin-degrading enzyme (IDE) was similar
in the three experimental groups. (b) Rosiglitazone increased the
expression of the lipid-transporter Abca1, but not that of ApoE, which
was decreased in the groups of transgenic J20 mice. Values are
means±SEM (n¼ 7–8 animals per group). *Po0.05 vs non-transgenic
(Non-Tg) + sal, wPo0.05 vs J20 + sal (ANOVA followed by Tukey’s HSD
post-hoc test).
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Despite the classical hypothesis of the cytotoxic features
of activated microglia, recent evidences suggest that
microglia are protective in the early stages of AD by
promoting amyloid phagocytosis and clearance of fibrillar
and soluble amyloid. Microglia can be activated towards a
classical proinflammatory phenotype, but also to a neuro-
protective phenotype (Venneti et al, 2009). Early microglial
activation has been attributed to a neuroprotective role in
amyloid pathology, promoting Ab clearance (Yan et al,
2003). Different receptors expressed in the microglia, such
as CD36, are involved in this clearance process (Yan et al,

1996; El Khoury et al, 1998). Microglia cells also express
enzymes such as IDE and NEP (Leissring et al, 2003), and
participate in the ApoE-related Ab degradation (Jiang et al,
2008). However, with the progression of the disease, the
microglial neuroprotective property decrease and the
proinflammatory characteristics become more prominent.
Furthermore, a recent study has described that high levels
of serum TNFa are associated with an increase in cognitive
decline in AD (Holmes et al, 2009). In this study, transgenic
APP mice showed a microglial morphology characteristic of
a classical proinflammatory phenotype, along with an
overexpression of TNFa and Cox2, which may contribute
to the pathogenic events. Rosiglitazone-treated animals
presented in turn a different microglial morphology, similar
to resting microglia, but with a probably higher phagocytic
activity because of the increased CD36 receptor expression.
Accordingly, rosiglitazone-induced upregulation of CD36
promotes microglia-mediated phagocytosis in cell cultures
(Zhao et al, 2009). This change in microglial morphology
was accompanied by an induction in the expression of YM-1
and FIZZ-1, markers for alternative activation.

In conclusion, these results indicate that rosiglitazone
reduces AD pathology and restores the hippocampal
function, leading to a rescue of memory impairment in
APP transgenic mice. Of particular interest was the virtual
elimination of the abundant amyloid plaques in the
hippocampus and entorhinal cortex of old mice. We
hypothesize that this PPARg agonist could mediate the
activation of a cell-dependent clearance mechanism, possi-
bly by transcriptional activation of some proteins involved

Figure 8 Modification by chronic rosiglitazone of the microglial phenotype in J20 transgenic mice. (a) Representative images of microglial immunolabelling
using the CD11b antibody showed an amoeboid morphology (arrow) in the saline-treated J20 mice. Both non-transgenic and rosiglitazone-treated
transgenic mice showed a ‘‘resting’’-like morphology (arrows). Scale bar¼ 20mm. (b) Saline-treated J20 mice showed an overexpression of the
proinflammatory factors Cox2 and TNFa, which were significantly or partially reversed by the drug. Rosiglitazone prevented the reduced expression of the
markers of alternative phenotype YM1 and FIZZ-1 observed in J20 mice. Values are means±SEM (n¼ 7–8 animals per group). *Po0.05 vs non-transgenic
(Non-Tg) + sal, wPo0.05, vs J20 + sal (ANOVA followed by Tukey’s HSD post-hoc test).

Figure 9 Chronic rosiglitazone treatment increased the expression of
CD36 receptor. Values are means±SEM (n¼ 7–8 animals per group).
*Po0.05 vs non-transgenic (Non-Tg) + sal, wPo0.05 vs J20 + sal (ANOVA
followed by Tukey’s HSD post-hoc test).
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in the degradation of Ab and tau. This study provides
further mechanistic support for the use of rosiglitazone in
the treatment of AD.
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