5 research outputs found

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco

    No full text
    Embora existam linhagens de Escherichia coli não patogênicas para aves, muitas outras possuem a capacidade de causar sérios danos à saúde das mesmas, sendo capazes de ocasionar diferentes tipos de processos infecciosos. As linhagens patogênicas são denominadas Avian Pathogenic Escherichia coli (APEC), possuindo genes relacionados ao processo de patogênese em epissomos (plasmídios) ou no cromossomo. A presença de plasmídios, contendo genes de resistência a antibióticos em linhagens aviárias, patogênicas ou não, indicam a possibilidade de transferência gênica lateral entre diferentes tipos de linhagens facilitando também a transferência de genes de patogenicidade ou virulência. Objetivou-se com este estudo avaliar o perfil de sensibilidade a antibióticos (13) de diferentes amostras (35) de E. coli isoladas de aves comerciais do Estado de Pernambuco apresentando, ou não, sinais clínicos de processos infecciosos e correlacionar esta resistência com a presença de plasmídios. Os testes utilizados demonstraram que 94,28% dos isolados foram resistentes a três ou mais antibióticos, com a lincomicina apresentando o maior percentual de resistência (100%). Na Concentração Inibitória Mínima (CIM) observou-se multirresistência a vários antimicrobianos. A presença de plasmídios foi detecada em 80,0% (28/35) dos isolados, com 16 isolados apresentando plasmídios com peso molecular aproximado de 88 MDa. Também foi verificada a presença de linhagens apresentando plasmídios de vários tamanhos. Concluiu-se que isolados de E. coli resistentes a antimicrobianos utilizados na avicultura estão presentes no Estado de Pernambuco, tanto em frangos de corte quanto em poedeiras comerciais. A presença de plasmídios detectados na maioria dos isolados pode estar associada à resistência aos antimicrobianos e sugere a presença de possíveis genes relacionados à patogenicidade. Monitorar a resistência a antibióticos em bactérias isoladas de animais torna-se um fator determinante para eleição e êxito do tratamento, bem como a possibilidade de eliminação daquelas que possuem plasmídios para se evitar a transferência de genes relacionados à patogenicidade

    ABC-SPH risk score for in-hospital mortality in COVID-19 patients : development, external validation and comparison with other available scores

    No full text
    The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March-July, 2020. The model was validated in the 1054 patients admitted during August-September, as well as in an external cohort of 474 Spanish patients. Median (25-75th percentile) age of the model-derivation cohort was 60 (48-72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO/FiO ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829-0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833-0.885]) and Spanish (0.894 [95% CI 0.870-0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19

    ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients

    Get PDF
    Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p

    TRY plant trait database, enhanced coverage and open access

    No full text
    Plant traits-the morphological, ahawnatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore