77 research outputs found

    Variants in the 14q32 miRNA cluster are associated with osteosarcoma risk in the Spanish population

    Get PDF
    Association studies in osteosarcoma risk found significant results in intergenic regions, suggesting that regions which do not codify for proteins could play an important role. The deregulation of microRNAs (miRNAs) has been already associated with osteosarcoma. Consequently, genetic variants affecting miRNA function could be associated with risk. This study aimed to evaluate the involvement of all genetic variants in pre-miRNAs described so far in relationship to the risk of osteosarcoma. We analyzed a total of 213 genetic variants in 206 pre-miRNAs in two cohorts of osteosarcoma patients (n = 100) and their corresponding controls (n = 256) from Spanish and Slovenian populations, using Goldengate Veracode technology (Illumina). Four polymorphisms in pre-miRNAs at 14q32 miRNA cluster were associated with osteosarcoma risk in the Spanish population (rs12894467, rs61992671, rs58834075 and rs12879262). Pathway enrichment analysis including target genes of these miRNAs pointed out the WNT signaling pathways overrepresented. Moreover, different single nucleotide polymorphism (SNP) effects between the two populations included were observed, suggesting the existence of population differences. In conclusion, 14q32 miRNA cluster seems to be a hotspot for osteosarcoma susceptibility in the Spanish population, but not in the Slovenian, which supports the idea of the existence of population differences in developing this disease.Special thanks to Slovenian Osteosarcoma Study Group for their collaboration in sample collection. The "Slovenian Osteosarcoma Study Group" is conformed by Katja Goricar from the Institute of Biochemistry, Faculty of Medicine of Ljubljana, Viljem Kovac from the Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine of University of Ljubljana, Janez Jazbec from the Institute of Oncology Ljubljana, Janez Lamovec from the Oncology and Hematology Unit, University Children's Hospital, University Medical Centre of Ljubljana and Prof. Vita Dolzan included in the authorship of this article. The authors would like to thank Leire Iparraguirre for her technical assistance with figures. This study was funded by the Basque Government (IT661-13, IT989-16), UPV/EHU (UFI11/35)

    The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models

    Get PDF
    Last advances in the treatment of pediatric tumors has led to an increase of survival rates of children affected by primitive neuroectodermal tumors, however, still a significant amount of the patients do not overcome the disease. In addition, the survivors might suffer from severe side effects caused by the current standard treatments. Oncolytic virotherapy has emerged in the last years as a promising alternative for the treatment of solid tumors. In this work, we study the anti-tumor effect mediated by the oncolytic adenovirus VCN-01 in CNS-PNET models. VCN-01 is able to infect and replicate in PNET cell cultures, leading to a cytotoxicity and immunogenic cell death. In vivo, VCN-01 increased significantly the median survival of mice and led to long-term survivors in two orthotopic models of PNETs. In summary, these results underscore the therapeutic effect ofVCN-01 for rare pediatric cancers such as PNETs, and warrants further exploration on the use of this virus to treat them

    Oncolytic viruses as therapeutic tools for pediatric brain tumors

    Get PDF
    In recent years, we have seen an important progress in our comprehension of the molecular basis of pediatric brain tumors (PBTs). However, they still represent the main cause of death by disease in children. Due to the poor prognosis of some types of PBTs and the long-term adverse effects associated with the traditional treatments, oncolytic viruses (OVs) have emerged as an interesting therapeutic option since they displayed safety and high tolerability in pre-clinical and clinical levels. In this review, we summarize the OVs evaluated in different types of PBTs, mostly in pre-clinical studies, and we discuss the possible future direction of research in this field. In this sense, one important aspect of OVs antitumoral effect is the stimulation of an immune response against the tumor which is necessary for a complete response in preclinical immunocompetent models and in the clinic. The role of the immune system in the response of OVs needs to be evaluated in PBTs and represents an experimental challenge due to the limited immunocompetent models of these diseases available for pre-clinical research

    KRAS mutational status analysis of peripheral blood isolated circulating tumor cells in metastatic colorectal patients

    Get PDF
    The present study describes an optimized method for isolating peripheral blood circulating tumor cells (CTCs) and performing KRAS mutation analysis. The approach combines isolation of peripheral blood mononuclear cells and immunomagnetic labeling with CD45 and CD326 human microbeads with KRAS analysis performed with a Therascreen KRAS kit by quantitative PCR. KRAS mutations were detected in the CTCs of patients with metastatic colorectal cancer (mCRC). CTCs may represent an alternative to invasive procedures and their analysis may be representative of the current disease status of the patient. This proposed analysis may be performed in a daily clinical practice

    Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope

    Get PDF
    Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted

    Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models

    Get PDF
    Pediatric high grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPGs), are aggressive tumors with a dismal outcome. Radiotherapy (RT) is part of the standard of care of these tumors; however, radiotherapy only leads to a transient clinical improvement. Delta-24-RGD is a genetically engineered tumor-selective adenovirus that has shown safety and clinical efficacy in adults with recurrent gliomas. In this work, we evaluated the feasibility, safety and therapeutic efficacy of Delta-24-RGD in combination with radiotherapy in pHGGs and DIPGs models. Our results showed that the combination of Delta-24-RGD with radiotherapy was feasible and resulted in a synergistic anti-glioma effect in vitro and in vivo in pHGG and DIPG models. Interestingly, Delta-24-RGD treatment led to the downregulation of relevant DNA damage repair proteins, further sensitizing tumors cells to the effect of radiotherapy. Additionally, Delta-24-RGD/radiotherapy treatment significantly increased the trafficking of immune cells (CD3, CD4+ and CD8+) to the tumor niche compared with single treatments. In summary, administration of the Delta-24-RGD/radiotherapy combination to pHGG and DIPG models is safe and significantly increases the overall survival of mice bearing these tumors. Our data offer a rationale for the combination Delta-24-RGD/radiotherapy as a therapeutic option for children with these tumors. SIGNIFICANCE: Delta-24-RGD/radiotherapy administration is safe and significantly increases the survival of treated mice. These positive data underscore the urge to translate this approach to the clinical treatment of children with pHGG and DIPGs

    Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET

    Get PDF
    BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses. METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques. RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01)

    Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET

    Get PDF
    BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses. METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques. RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01)

    A Precision Treatment Model for Internet-Delivered Cognitive Behavioral Therapy for Anxiety and Depression among University Students:A Secondary Analysis of a Randomized Clinical Trial

    Get PDF
    Importance: Guided internet-delivered cognitive behavioral therapy (i-CBT) is a low-cost way to address high unmet need for anxiety and depression treatment. Scalability could be increased if some patients were helped as much by self-guided i-CBT as guided i-CBT. Objective: To develop an individualized treatment rule using machine learning methods for guided i-CBT vs self-guided i-CBT based on a rich set of baseline predictors. Design, Setting, and Participants: This prespecified secondary analysis of an assessor-blinded, multisite randomized clinical trial of guided i-CBT, self-guided i-CBT, and treatment as usual included students in Colombia and Mexico who were seeking treatment for anxiety (defined as a 7-item Generalized Anxiety Disorder [GAD-7] score of ≥10) and/or depression (defined as a 9-item Patient Health Questionnaire [PHQ-9] score of ≥10). Study recruitment was from March 1 to October 26, 2021. Initial data analysis was conducted from May 23 to October 26, 2022. Interventions: Participants were randomized to a culturally adapted transdiagnostic i-CBT that was guided (n = 445), self-guided (n = 439), or treatment as usual (n = 435). Main Outcomes and Measures: Remission of anxiety (GAD-7 scores of ≤4) and depression (PHQ-9 scores of ≤4) 3 months after baseline. Results: The study included 1319 participants (mean [SD] age, 21.4 [3.2] years; 1038 women [78.7%]; 725 participants [55.0%] came from Mexico). A total of 1210 participants (91.7%) had significantly higher mean (SE) probabilities of joint remission of anxiety and depression with guided i-CBT (51.8% [3.0%]) than with self-guided i-CBT (37.8% [3.0%]; P =.003) or treatment as usual (40.0% [2.7%]; P =.001). The remaining 109 participants (8.3%) had low mean (SE) probabilities of joint remission of anxiety and depression across all groups (guided i-CBT: 24.5% [9.1%]; P =.007; self-guided i-CBT: 25.4% [8.8%]; P =.004; treatment as usual: 31.0% [9.4%]; P =.001). All participants with baseline anxiety had nonsignificantly higher mean (SE) probabilities of anxiety remission with guided i-CBT (62.7% [5.9%]) than the other 2 groups (self-guided i-CBT: 50.2% [6.2%]; P =.14; treatment as usual: 53.0% [6.0%]; P =.25). A total of 841 of 1177 participants (71.5%) with baseline depression had significantly higher mean (SE) probabilities of depression remission with guided i-CBT (61.5% [3.6%]) than the other 2 groups (self-guided i-CBT: 44.3% [3.7%]; P =.001; treatment as usual: 41.8% [3.2%]; P &lt;.001). The other 336 participants (28.5%) with baseline depression had nonsignificantly higher mean (SE) probabilities of depression remission with self-guided i-CBT (54.4% [6.0%]) than guided i-CBT (39.8% [5.4%]; P =.07). Conclusions and Relevance: Guided i-CBT yielded the highest probabilities of remission of anxiety and depression for most participants; however, these differences were nonsignificant for anxiety. Some participants had the highest probabilities of remission of depression with self-guided i-CBT. Information about this variation could be used to optimize allocation of guided and self-guided i-CBT in resource-constrained settings. Trial Registration: ClinicalTrials.gov Identifier: NCT04780542.</p

    Immunotherapy with CAR-T cells in paediatric haematology-oncology

    Get PDF
    [ES] A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel, ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CAR-T en España, evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular, dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos. [EN] Despite being a rare disease, cancer is the first cause of mortality due to disease during the paediatric age in the developed countries. The current, great increase in new treatments, such as immunotherapy, constitutes a new clinical and regulatory paradigm. Cellular immunotherapy is one of these types of immunotherapy. In particular, the advanced therapy drugs with chimeric antigen receptors in the T-lymphocytes (CAR-T), and particularly the CAR-T19 cells, has opened up a new scenario in the approach to haematology tumours like acute lymphoblastic leukaemia and the B-Cell lymphomas. The approval of tisagenlecleucel and axicabtagene ciloleucel by the regulatory authorities has led to the setting up of the National Plan for Advanced Therapies-CAR-T drugs in Spain. There is evidence of, not only the advantage of identifying the centres most suitable for their administration, but also the need for these to undergo a profound change in order that their healthcare activity is extended, in some cases, to the ability for the in-house manufacture of these types of therapies. The hospitals specialised in paediatric haematology-oncology thus have the challenge of progressing towards a healthcare model that integrates cellular immunotherapy, having the appropriate capacity to manage all aspects relative to their use, manufacture, and administration of these new treatments.S
    corecore