15 research outputs found

    Results of the COVID-19 mental health international for the general population (COMET-G) study.

    Get PDF
    INTRODUCTION: There are few published empirical data on the effects of COVID-19 on mental health, and until now, there is no large international study. MATERIAL AND METHODS: During the COVID-19 pandemic, an online questionnaire gathered data from 55,589 participants from 40 countries (64.85% females aged 35.80 ± 13.61; 34.05% males aged 34.90±13.29 and 1.10% other aged 31.64±13.15). Distress and probable depression were identified with the use of a previously developed cut-off and algorithm respectively. STATISTICAL ANALYSIS: Descriptive statistics were calculated. Chi-square tests, multiple forward stepwise linear regression analyses and Factorial Analysis of Variance (ANOVA) tested relations among variables. RESULTS: Probable depression was detected in 17.80% and distress in 16.71%. A significant percentage reported a deterioration in mental state, family dynamics and everyday lifestyle. Persons with a history of mental disorders had higher rates of current depression (31.82% vs. 13.07%). At least half of participants were accepting (at least to a moderate degree) a non-bizarre conspiracy. The highest Relative Risk (RR) to develop depression was associated with history of Bipolar disorder and self-harm/attempts (RR = 5.88). Suicidality was not increased in persons without a history of any mental disorder. Based on these results a model was developed. CONCLUSIONS: The final model revealed multiple vulnerabilities and an interplay leading from simple anxiety to probable depression and suicidality through distress. This could be of practical utility since many of these factors are modifiable. Future research and interventions should specifically focus on them

    Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide

    No full text
    Acute intoxication with large doses of ammonia leads to rapid death. The main mechanism for ammonia elimination in brain is its reaction with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase and consumes ATP. In the course of studies on the molecular mechanism of acute ammonia toxicity, we have found that glutamine synthetase activity and glutamine content in brain are modulated by NMDA receptors and nitric oxide. The main findings can be summarized as follows. Blocking NMDA receptors prevents ammonia-induced depletion of brain ATP and death of rats but not the increase in brain glutamine, indicating that ammonia toxicity is not due to increased activity of glutamine synthetase or formation of glutamine but to excessive activation of NMDA receptors. Blocking NMDA receptors in vivo increases glutamine synthetase activity and glutamine content in brain, indicating that tonic activation of NMDA receptors maintains a tonic inhibition of glutamine synthetase. Blocking NMDA receptors in vivo increases the activity of glutamine synthetase assayed in vitro, indicating that increased activity is due to a covalent modification of the enzyme. Nitric oxide inhibits glutamine synthetase, indicating that the covalent modification that inhibits glutamine synthetase is a nitrosylation or a nitration. Inhibition of nitric oxide synthase increases the activity of glutamine synthetase, indicating that the covalent modification is reversible and it must be an enzyme that denitrosylate or denitrate glutamine synthetase. NMDA mediated activation of nitric oxide synthase is responsible only for part of the tonic inhibition of glutamine synthetase. Other sources of nitric oxide are also contributing to this tonic inhibition. Glutamine synthetase is not working at maximum rate in brain and its activity may be increased pharmacologically by manipulating NMDA receptors or nitric oxide content. This may be useful, for example, to increase ammonia detoxification in brain in hyperammonemic situations.Supported in part by grants from the Spanish Plan Nacional de I + D (SAF97-0001) and of the Promoción General del Conocimiento of Ministerio de Educación y Cultura (PM99-0019)

    Widely applicable metallacarborane reagents for ?-conjugated systems

    No full text
    The compounds [N(CH3)4][3,3?-Co(8-(p-C6H4C2H3)-1,2-C2B9H10)(1?,2?-C2B9H11)], [N(CH3)4][3,3?-Co(8-(p-C6H4CHO)-1,2-C2B9H10)(1?,2?-C2B9H11)], and [N(CH3)4][3,3?-Co(8-(m-C6H4CHO)-1,2-C2B9H10)(1?,2?-C2B9H11)] were synthesized using an easy methodology, in very good yields and large quantities, which are important requisites to be employed as starting reagents. They have been fully characterized by elemental analysis, IR, NMR, and MALDI-TOF-MS, and the crystal structures of [N(CH3)4][3,3?-Co(8-(p-C6H4C2H3)-1,2-C2B9H10)(1?,2?-C2B9H11)] and [N(CH3)4][3,3?-Co(8-(p-C6H4CHO)-1,2-C2B9H10)(1?,2?-C2B9H11)] were elucidated by single-crystal X-ray diffraction. These compounds, having terminal formyl and vinyl functional groups, are suitable platforms to involve the aromatic cobaltabisdicarbollide unit into extended ?-conjugated systems. It is expected that these synthons will facilitate the applicability of metallacarboranes in a wide variety of different fields, where ?-conjugated systems are needed to keep electronic communication
    corecore