112 research outputs found

    Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73811/1/j.1365-2958.2000.01687.x.pd

    Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73811/1/j.1365-2958.2000.01687.x.pd

    Streptococcus faecalis sex pheromone (cAD1) response: Evidence that the peptide inhibitor excreted by pAD1-containing cells may be plasmid determined

    Full text link
    Streptococcus faecalis strains harboring the conjugative plasmid pAD1 excrete a small peptide, iAD1, which inhibits the sex pheromone cAD1. Studies making use of the host strain Streptococcus faecium 9790, which normally does not excrete peptide pheromones, suggest that iAD1 may be determined directly by pAD1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26869/1/0000434.pd

    Isolation and structure of the Streptococcus faecalis sex pheromone, cAM373

    Get PDF
    The Streptococcus faecalis sex pheromone, cAM373, which induces a mating response of donor cells harboring plasmid pAM373 and is also produced by Staphylococcus aureus, was isolated and its structure determined. Supernatant from an overnight culture of a recipient strain was subjected to successive purification procedures, and 4.4 [mu]g cAM373 was obtained. The isolated pheromone showed activity at a concentration as low as 5 x 10-11 M. Sequence analysis indicated that cAM373 was a heptapeptide, H-Ala-Ile-Phe-Ile-Leu-Ala-Ser-OH, and that its Mr was 733. A synthetic replicate of the peptide showed the same biological activity and chromatographic behavior as the native cAM373.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26041/1/0000114.pd

    Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri

    Get PDF
    The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However most gene circuits in a cell are under control of external signals and thus quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intringuing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks

    Transfer of Neuroplasticity from Nucleus Accumbens Core to Shell Is Required for Cocaine Reward

    Get PDF
    It is well established that cocaine induces an increase of dendritic spines density in some brain regions. However, few studies have addressed the role of this neuroplastic changes in cocaine rewarding effects and have often led to contradictory results. So, we hypothesized that using a rigorous time- and subject-matched protocol would demonstrate the role of this spine increase in cocaine reward. We designed our experiments such as the same animals (rats) were used for spine analysis and behavioral studies. Cocaine rewarding effects were assessed with the conditioned place preference paradigm. Spines densities were measured in the two subdivisions of the nucleus accumbens (NAcc), core and shell. We showed a correlation between the increase of spine density in NAcc core and shell and cocaine rewarding effects. Interestingly, when cocaine was administered in home cages, spine density was increase in NAcc core only. With anisomycin, a protein synthesis inhibitor, injected in the core we blocked spine increase in core and shell and also cocaine rewarding effects. Strikingly, whereas injection of this inhibitor in the shell immediately after conditioning had no effect on neuroplasticity or behavior, its injection 4 hours after conditioning was able to block neuroplasticity in shell only and cocaine-induced place preference. Thus, it clearly appears that the neuronal plasticity in the NAcc core is essential to induce plasticity in the shell, necessary for cocaine reward. Altogether, our data revealed a new mechanism in the NAcc functioning where a neuroplasticity transfer occurred from core to shell

    Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

    Get PDF
    Fossil records indicate that life appeared in marine environments ∌3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land

    Circadian rhythms persist without transcription in a eukaryote

    Get PDF
    Circadian rhythms are ubiquitous in eukaryotes, and coordinate numerous aspects of behaviour, physiology and metabolism, from sleep/wake cycles in mammals to growth and photosynthesis in plants. This daily timekeeping is thought to be driven by transcriptionaltranslational feedback loops, whereby rhythmic expression of clock- gene products regulates the expression of associated genes in approximately 24-hour cycles. The specific transcriptional components differ between phylogenetic kingdoms. The unicellular pico-eukaryotic alga Ostreococcus tauri possesses a naturally minimized clock, which includes many features that are shared with plants, such as a central negative feedback loop that involves the morning-expressed CCA1 and evening-expressed TOC1 genes. Given that recent observations in animals and plants have revealed prominent post-translational contributions to timekeeping, a reappraisal of the transcriptional contribution to oscillator function is overdue. Here we show that non-transcriptional mechanisms are sufficient to sustain circadian timekeeping in the eukaryotic lineage, although they normally function in conjunction with transcriptional components. We identify oxidation of peroxiredoxin proteins as a transcription-independent rhythmic biomarker, which is also rhythmic in mammals. Moreover we show that pharmacological modulators of the mammalian clock mechanism have the same effects on rhythms in Ostreococcus. Post-translational mechanisms, and at least one rhythmic marker, seem to be better conserved than transcriptional clock regulators. It is plausible that the oldest oscillator components are non-transcriptional in nature, as in cyanobacteria, and are conserved across kingdoms

    Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers

    Get PDF
    Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA₁₋₆). LPA receptor type 1 (LPA₁) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA₁ is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA₁ is known to induce IL-6 and IL-8 secretion, as also do LPA₂ and LPA₃. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA₁,₂,₆; MDA-MB-231: LPA1,2; MCF-7: LPA₂,₆). Among the set of genes upregulated by LPA only in LPA₁-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA₁-₃ antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA₁ (MDA-B02/LPA₁) and downregulated for LPA₁ (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA₁ and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA₁. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA₁ activation state in patients receiving anti-LPA₁ therapies

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe
    • 

    corecore