26 research outputs found

    Clonal diversity of Acinetobacter baumannii from diabetic patients in Saudi Arabian hospitals

    Get PDF
    Carbapenem-resistant Acinetobacter baumannii (CR-AB) represents a major health-care problem causing high rates of morbidity and mortality. This study investigated the clonality of CR-AB isolated from diabetic patients from different regions in Saudi Arabia as well as the relatedness of the β lactamases genes. A total of 64 non-repetitive CR-AB clinical isolates were collected from 16 different regions in Saudi Arabia from intensive care patients. Isolates were identified phenotypically by Vitek 2 compact system and genotypically by amplification of blaOXA-51-like gene. The target sequences were amplified by PCR and the clonal diversity of the isolates was explored by PFGE. Resistance studies revealed that the prevalence of imipenem and meropenem resistance was 92% and 96%, respectively, while the vast majority of the isolates were susceptible to tigecycline and colistin. In addition, blaVIM and blaOXA-23 were the most prevalent genes in the isolates under investigation while ISAba1 was the most dominant insertion sequence. PFGE results showed 13 clusters; clone H was dominant comprising 20 isolates from four hospitals followed by clones C and F comprising 11 isolates each from 3 and 6 hospitals, respectively. Moreover, the current study signified the clonal diversity of CR-AB in Saudi Arabia and showed the ability of some clones to infect patients in many different cities

    Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia

    Get PDF
    It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The blaVIM gene was detected in 94% of isolates, while blaOXA–23–like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia

    Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Strain from Chile

    Get PDF
    Date of Acceptance: 20/05/2015 Copyright © 2015 Opazo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. ACKNOWLEDGMENTS This work was supported through funds granted by the Chilean National Commission for Scientific and Technological Research (CONICYT) and by the National Fund for Scientific and Technological Development (FONDECYT) of Chile (project 3150286).Peer reviewedPublisher PD

    Development of antimicrobial resistance in Acinetobacter spp and methicillin-resistant Staphylococcus aureus

    No full text
    Background: Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA) represent the most worrying Gram-negative and Gram-positive nosocomial pathogens of the present age. They are of increasing concern in the clinical environment due to their multi-drug resistance and the dwindling therapeutic options available. A. baumannii is the most frequently isolated clinical species of the genus, and is able to rapidly acquire resistance. Hypermutators, most frequently deficient in mismatch repair (MMR) via defects in the mutS gene, have been associated with antimicrobial resistance in several bacterial populations. To date, however, the potential role of MMR-deficient mutators in the development of resistance in clinical Acinetobacter spp. has not been investigated. Biocides, most notably chlorhexidine (CHX), are increasingly used in the hospital environment to prevent bacterial spread. This has led to concerns about the development of reduced biocide susceptibility and associated antibiotic resistance in hospital bacterial populations, where there is frequent exposure to both of these factors. The effect of CHX upon defined clinical MRSA isolates is examined here. Methods: The mutS gene of clinical Acinetobacter spp. isolates with varying sensitivities was sequenced and compared to establish whether any variations were present. Mutation studies were performed on isolates by challenging them with ciprofloxacin to determine whether different mutS types correlated with any variation in their ability to develop significant fluoroquinolone resistance. The response of clinical MRSA isolates to a range of CHX concentrations was examined with susceptibility testing methods, and effects were compared with standard strains. Determination of post-exposure minimum inhibitory concentrations (MICs) of a range of antibiotics enabled evaluation of whether exposure to CHX had an effect on susceptibility to antibiotics. Results: Variation was observed in the mutS gene of clinical Acinetobacter spp. isolates, with greater homology observed as resistance increased. A highly conserved and previously unreported amino acid sequence was discovered in resistant isolates. Nonresistant isolates with this ‘R-type’ mutS sequence appeared to have a greater ability to develop significant ciprofloxacin resistance. Clinical MRSA isolates had varying susceptibility to CHX, and there were differences in the susceptibility of standard strains compared to clinical isolates. CHX residues exerted a prolonged minimal inhibitory effect, and several increases in antibiotic MICs following CHX exposure were observed. Conclusions: The correlation of the mutS sequence with mutation ability suggests that defects in the mutS gene may have a role to play in the ability of certain Acinetobacter spp. to rapidly acquire resistance. This could have implications for the treatment of Acinetobacter spp. infections, and may enable quick determination of which clinical isolates have the potential to develop clinically significant resistance. Incomplete eradication due to the prolonged minimal effect of CHX residues may act as a selective pressure in the hospital environment, allowing survival of reduced susceptibility MRSA isolates. Increases in antibiotic MICs following CHX exposure is of grave concern for the future of biocide usage.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Molecular epidemiology of antibiotic resistance in humans and animals

    No full text
    Antibiotic resistance is one of the largest and most pressing threats to human health. Understanding how antibiotic resistance emerges and spreads, and how we can detect this, is a key to developing strategies to overcome this threat. In addition to mutation, resistance can emerge through the transfer of resistance genes on plasmids, through transduction, or natural transformation. Resistance genes are often found in mobile genetic elements, such as transposons and integrons that can enhance their spread. Traditional methods to genotype bacteria such as PCR-based approaches or pulsed-field gel electrophoresis (PFGE) are being replaced by molecular approaches such as multi-locus sequence typing (MLST) and most recently whole genome sequencing (WGS). WGS is particularly powerful as it allows an assessment of the genetic relatedness of the bacteria, the specific resistance genes present, and the mobile elements that may be facilitating resistance gene spread or expression. Antibiotic resistance genes are frequently acquired from other bacteria, and can then be selected under antibiotic exposure. A One Health approach to antibiotic resistance, which considers the contribution of animals (such as those farmed for food) and the environment is a key to gaining a complete understanding of the epidemiology of antibiotic resistance

    The rise of carbapenem-resistant Acinetobacter baumannii

    No full text
    Acinetobacter spp. are Gram-negative bacteria that have become one of the most difficult pathogens to treat. The species A. baumannii, largely unknown 30 years ago, has risen to prominence particularly because of its ability to cause infections in immunocompromised patients. It is now a predominant pathogen in many hospitals as it has acquired resistance genes to virtually all antibiotics capable of treating Gram-negative bacteria, including the fluoroquinolones and the cephalosporins. Some members of the species have accumulated these resistance genes in large resistance islands, located in a "hot-spot" within the bacterial chromosome. The only conventional remaining treatment options were the carbapenems. However, A. baumannii possesses an inherent class D β-lactamase gene (blaOXA-51-like) that can have the ability to confer carbapenem resistance. Additionally, mechanisms of carbapenem resistance have emerged that derive from the importation of the distantly related class D β-lactamase genes blaOXA-23 and blaOXA-58. Although not inducible, the expression of these genes is controlled by mobile promoters carried on ISAba elements. It has also been found that other resistance genes including the chromosomal class C β-lactamase genes conferring cephalosporin resistance are controlled in the same manner. Colistin is now considered to be the final drug capable of treating infections caused by carbapenem-resistant A. baumannii; however, strains are now being isolated that are resistant to this antibiotic as well. The increasing inability to treat infections caused by A. baumannii ensures that this pathogen more than ranks with MRSA or Clostridium difficile as a threat to modern medicine

    Best in class: a good principle for antibiotic usage to limit resistance development?

    Get PDF
    The causes of antibiotic resistance are often complex and it is difficult to identify strategies to prevent or delay its emergence. One strategy has been to use less active members of a drug class, so that when resistance develops the more active members will still prevail. This stratagem may often fail because this resistance may form the basis of resistance to the whole class. Often, less active drugs are the first to be discovered and more active versions follow, so we have had no choice; however, increasingly less active drugs are available to deal with specific infections and this may have a detri-mental effect on the class as a whole

    Multi-drug resistance profiles and the genetic features of Acinetobacter baumannii isolates from Bolivia

    Get PDF
    Introduction: Acinetobacter baumannii is opportunistic in debilitated hospitalised patients. Because information from some South American countries was previously lacking, this study examined the emergence of multi-resistant A. baumannii in three hospitals in Cochabamba, Bolivia, from 2008 to 2009. Methodology: Multiplex PCR was used to identify the main resistance genes in 15 multi-resistant A. baumannii isolates. RT-PCR was used to measure gene expression. The genetic environment of these genes was also analysed by PCR amplification and sequencing. Minimum inhibitory concentrations were determined for key antibiotics and some were determined in the presence of an efflux pump inhibitor, 1-(1-napthylmethyl) piperazine. Results: Fourteen strains were found to be multi-resistant. Each strain was found to have the bla(OXA-58) gene with the ISAba3-like element upstream, responsible for over-expression of the latter and subsequent carbapenem resistance. Similarly, ISAba1, upstream of the bla(ADC) gene caused over-expression of the latter and cephalosporin resistance; mutations in the gyrA(Ser83 to Leu) and parC (Ser-80 to Phe) genes were commensurate with fluoroquinolone resistance. In addition, the adeA, adeB efflux genes were over-expressed. All 15 isolates were positive for at least two aminoglycoside resistance genes. Conclusion: This is one of the first reports analyzing the multi-drug resistance profile of A. baumannii strains isolated in Bolivia and shows that the over-expression of thebla(OXA-58), bla(ADC) and efflux genes together with aminoglycoside modifying enzymes and mutations in DNA topoisomerases are responsible for the multi-resistance of the bacteria and the subsequent difficulty in treating infections caused by them.BSL was funded by the University of Edinburgh Overseas Research scholarship. A part of this project was funded by an RA0119 MRC grant. LG was funded by a grant from Vicerrectorado de Investigacion de la Universidad del Pais Vasco (Plan de movilidad de investigadores
    corecore