28 research outputs found
Metformin Plus Insulin for Preexisting Diabetes or Gestational Diabetes in Early Pregnancy
Importance: Insulin is recommended for pregnant persons with preexisting type 2 diabetes or diabetes diagnosed early in pregnancy. The addition of metformin to insulin may improve neonatal outcomes. Objective: To estimate the effect of metformin added to insulin for preexisting type 2 or diabetes diagnosed early in pregnancy on a composite adverse neonatal outcome. Design, Setting, and Participants: This randomized clinical trial in 17 US centers enrolled pregnant adults aged 18 to 45 years with preexisting type 2 diabetes or diabetes diagnosed prior to 23 weeks' gestation between April 2019 and November 2021. Each participant was treated with insulin and was assigned to add either metformin or placebo. Follow-up was completed in May 2022. Intervention: Metformin 1000 mg or placebo orally twice per day from enrollment (11 weeks -<23 weeks) through delivery. Main Outcome and Measures: The primary outcome was a composite of neonatal complications including perinatal death, preterm birth, large or small for gestational age, and hyperbilirubinemia requiring phototherapy. Prespecified secondary outcomes included maternal hypoglycemia and neonatal fat mass at birth, and prespecified subgroup analyses by maternal body mass index less than 30 vs 30 or greater and those with preexisting vs diabetes early in pregnancy. Results: Of the 831 participants randomized, 794 took at least 1 dose of the study agent and were included in the primary analysis (397 in the placebo group and 397 in the metformin group). Participants' mean (SD) age was 32.9 (5.6) years; 234 (29%) were Black, and 412 (52%) were Hispanic. The composite adverse neonatal outcome occurred in 280 (71%) of the metformin group and in 292 (74%) of the placebo group (adjusted odds ratio, 0.86 [95% CI 0.63-1.19]). The most commonly occurring events in the primary outcome in both groups were preterm birth, neonatal hypoglycemia, and delivery of a large-for-gestational-age infant. The study was halted at 75% accrual for futility in detecting a significant difference in the primary outcome. Prespecified secondary outcomes and subgroup analyses were similar between groups. Of individual components of the composite adverse neonatal outcome, metformin-exposed neonates had lower odds to be large for gestational age (adjusted odds ratio, 0.63 [95% CI, 0.46-0.86]) when compared with the placebo group. Conclusions and Relevance: Using metformin plus insulin to treat preexisting type 2 or gestational diabetes diagnosed early in pregnancy did not reduce a composite neonatal adverse outcome. The effect of reduction in odds of a large-for-gestational-age infant observed after adding metformin to insulin warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT02932475
Metformin Plus Insulin for Preexisting Diabetes or Gestational Diabetes in Early Pregnancy: The MOMPOD Randomized Clinical Trial
IMPORTANCE: Insulin is recommended for pregnant persons with preexisting type 2 diabetes or diabetes diagnosed early in pregnancy. The addition of metformin to insulin may improve neonatal outcomes.
OBJECTIVE: To estimate the effect of metformin added to insulin for preexisting type 2 or diabetes diagnosed early in pregnancy on a composite adverse neonatal outcome.
DESIGN, SETTING, AND PARTICIPANTS: This randomized clinical trial in 17 US centers enrolled pregnant adults aged 18 to 45 years with preexisting type 2 diabetes or diabetes diagnosed prior to 23 weeks\u27 gestation between April 2019 and November 2021. Each participant was treated with insulin and was assigned to add either metformin or placebo. Follow-up was completed in May 2022.
INTERVENTION: Metformin 1000 mg or placebo orally twice per day from enrollment (11 weeks -\u3c23 \u3eweeks) through delivery.
MAIN OUTCOME AND MEASURES: The primary outcome was a composite of neonatal complications including perinatal death, preterm birth, large or small for gestational age, and hyperbilirubinemia requiring phototherapy. Prespecified secondary outcomes included maternal hypoglycemia and neonatal fat mass at birth, and prespecified subgroup analyses by maternal body mass index less than 30 vs 30 or greater and those with preexisting vs diabetes early in pregnancy.
RESULTS: Of the 831 participants randomized, 794 took at least 1 dose of the study agent and were included in the primary analysis (397 in the placebo group and 397 in the metformin group). Participants\u27 mean (SD) age was 32.9 (5.6) years; 234 (29%) were Black, and 412 (52%) were Hispanic. The composite adverse neonatal outcome occurred in 280 (71%) of the metformin group and in 292 (74%) of the placebo group (adjusted odds ratio, 0.86 [95% CI 0.63-1.19]). The most commonly occurring events in the primary outcome in both groups were preterm birth, neonatal hypoglycemia, and delivery of a large-for-gestational-age infant. The study was halted at 75% accrual for futility in detecting a significant difference in the primary outcome. Prespecified secondary outcomes and subgroup analyses were similar between groups. Of individual components of the composite adverse neonatal outcome, metformin-exposed neonates had lower odds to be large for gestational age (adjusted odds ratio, 0.63 [95% CI, 0.46-0.86]) when compared with the placebo group.
CONCLUSIONS AND RELEVANCE: Using metformin plus insulin to treat preexisting type 2 or gestational diabetes diagnosed early in pregnancy did not reduce a composite neonatal adverse outcome. The effect of reduction in odds of a large-for-gestational-age infant observed after adding metformin to insulin warrants further investigation
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Setting-specific Transmission Rates: A Systematic Review and Meta-analysis.
BACKGROUND: Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4-24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings
Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases
Biomarkers of disease activity have come into wide use in the study of mechanisms of human disease and in clinical medicine to both diagnose and predict disease course; as well as to monitor response to therapeutic intervention. Here we review biomarkers of the involvement of mast cells, basophils, and eosinophils in human allergic inflammation. Included are surface markers of cell activation as well as specific products of these inflammatory cells that implicate specific cell types in the inflammatory process and are of possible value in clinical research as well as within decisions made in the practice of allergy-immunology