102 research outputs found
Measuring and controlling medical record abstraction (MRA) error rates in an observational study.
BACKGROUND: Studies have shown that data collection by medical record abstraction (MRA) is a significant source of error in clinical research studies relying on secondary use data. Yet, the quality of data collected using MRA is seldom assessed. We employed a novel, theory-based framework for data quality assurance and quality control of MRA. The objective of this work is to determine the potential impact of formalized MRA training and continuous quality control (QC) processes on data quality over time.
METHODS: We conducted a retrospective analysis of QC data collected during a cross-sectional medical record review of mother-infant dyads with Neonatal Opioid Withdrawal Syndrome. A confidence interval approach was used to calculate crude (Wald\u27s method) and adjusted (generalized estimating equation) error rates over time. We calculated error rates using the number of errors divided by total fields ( all-field error rate) and populated fields ( populated-field error rate) as the denominators, to provide both an optimistic and a conservative measurement, respectively.
RESULTS: On average, the ACT NOW CE Study maintained an error rate between 1% (optimistic) and 3% (conservative). Additionally, we observed a decrease of 0.51 percentage points with each additional QC Event conducted.
CONCLUSIONS: Formalized MRA training and continuous QC resulted in lower error rates than have been found in previous literature and a decrease in error rates over time. This study newly demonstrates the importance of continuous process controls for MRA within the context of a multi-site clinical research study
Can Broader Diffusion of Value-Based Insurance Design Increase Benefits from US Health Care without Increasing Costs? Evidence from a Computer Simulation Model
Using a computer simulation based on US data, R. Scott Braithwaite and colleagues calculate the benefits of value-based insurance design, in which patients pay less for highly cost-effective services
Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration
A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass® 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13–93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100–150 µm and porosities of 75% had compressive strengths of 3.4 ± 0.3 MPa, 8.4 ± 0.8 MPa and 15.3 ± 1.8 MPa, for ICIE16, PSrBG and 13–93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
UGT1A1 is a major locus influencing bilirubin levels in African Americans
Total serum bilirubin is associated with several clinical outcomes, including cardiovascular disease, diabetes and drug metabolism. We conducted a genome-wide association study in 619 healthy unrelated African Americans in an attempt to replicate reported findings in Europeans and Asians and to identify novel loci influencing total serum bilirubin levels. We analyzed a dense panel of over two million genotyped and imputed SNPs in additive genetic models adjusting for age, sex, and the first two significant principal components from the sample covariance matrix of genotypes. Thirty-nine SNPs spanning a 78 kb region within the UGT1A1 displayed P-values <5 × 10−8. The lowest P-value was 1.7 × 10−22 for SNP rs887829. None of SNPs in the UGT1A1 remained statistically significant in conditional association analyses that adjusted for rs887829. In addition, SNP rs10929302 located in phenobarbital response enhancer module was significantly associated with bilirubin level with a P-value of 1.37 × 10−11; this enhancer module is believed to have a critical role in phenobarbital treatment of hyperbilirubinemia. Interestingly, the lead SNP, rs887829, is in strong linkage disequilibrium (LD) (r2≥0.74) with rs10929302. Taking advantage of the lower LD and shorter haplotypes in African-ancestry populations, we identified rs887829 as a more refined proxy for the causative variant influencing bilirubin levels. Also, we replicated the reported association between variants in SEMA3C and bilirubin levels. In summary, UGT1A1 is a major locus influencing bilirubin levels and the results of this study promise to contribute to understanding of the etiology and treatment of hyperbilirubinaemia in African-ancestry populations
Racial/ethnic differences in adults in randomized clinical trials of binge eating disorder.
Recent studies suggest that binge eating disorder (BED) is as prevalent among African American and Hispanic Americans as among Caucasian Americans; however, data regarding the characteristics of treatment-seeking individuals from racial and ethnic minority groups are scarce. The purpose of this study was to investigate racial/ethnic differences in demographic characteristics and eating disorder symptoms in participants enrolled in treatment trials for BED
Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression
Background
Suicidal behaviour can be conceptualised as a continuum from suicidal ideation, to suicidal attempts to completed suicide. In this study we identify genes contributing to suicidal behaviour in the depression study RADIANT.
Methodology/Principal Findings
A quantitative suicidality score was composed of two items from the SCAN interview. In addition, the 251 depression cases with a history of serious suicide attempts were classified to form a discrete trait. The quantitative trait was correlated with younger onset of depression and number of episodes of depression, but not with gender. A genome-wide association study of 2,023 depression cases was performed to identify genes that may contribute to suicidal behaviour. Two Munich depression studies were used as replication cohorts to test the most strongly associated SNPs. No SNP was associated at genome-wide significance level. For the quantitative trait, evidence of association was detected at GFRA1, a receptor for the neurotrophin GDRA (p = 2e-06). For the discrete trait of suicide attempt, SNPs in KIAA1244 and RGS18 attained p-values of <5e-6. None of these SNPs showed evidence for replication in the additional cohorts tested. Candidate gene analysis provided some support for a polymorphism in NTRK2, which was previously associated with suicidality.
Conclusions/Significance
This study provides a genome-wide assessment of possible genetic contribution to suicidal behaviour in depression but indicates a genetic architecture of multiple genes with small effects. Large cohorts will be required to dissect this further
Race/ethnicity, education, and treatment parameters as moderators and predictors of outcome in binge eating disorder.
Binge eating disorder (BED) is prevalent among individuals from minority racial/ethnic groups and among individuals with lower levels of education, yet the efficacy of psychosocial treatments for these groups has not been examined in adequately powered analyses. This study investigated the relative variance in treatment retention and post-treatment symptom levels accounted for by demographic, clinical, and treatment variables as moderators and predictors of outcome
Genome-Wide Local Ancestry Approach Identifies Genes and Variants Associated with Chemotherapeutic Susceptibility in African Americans
Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5′-deoxyfluorouridine (5′-DFUR)-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10−4). Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5′-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10−3). Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05), including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
- …