2,531 research outputs found

    Fingering convection and cloudless models for cool brown dwarf atmospheres

    Get PDF
    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.Comment: Accepted in ApJ

    Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    Get PDF
    We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.Comment: Accepted on March 30 2016 for publication in Ap

    Superfluid turbulence and pulsar glitch statistics

    Full text link
    Experimental evidence is reviewed for the existence of superfluid turbulence in a differentially rotating, spherical shell at high Reynolds numbers (\Rey\gsim 10^3), such as the outer core of a neutron star. It is shown that torque variability increases with \Rey, suggesting that glitch activity in radio pulsars may be a function of \Rey as well. The \Rey distribution of the 67 glitching radio pulsars with characteristic ages τc106\tau_c \leq 10^6 {\rm yr} is constructed from radio timing data and cooling curves and compared with the \Rey distribution of all 348 known pulsars with τc106\tau_c \leq 10^6 {\rm yr}. The two distributions are different, with a Kolmogorov-Smirnov probability 13.9×103\geq 1 - 3.9 \times 10^{-3}. The conclusion holds for (modified) Urca and nonstandard cooling, and for Newtonian and superfluid viscosities

    Radiation of Neutron Stars Produced by Superfluid Core

    Get PDF
    We find that neutron star interior is transparent for collisionless electron sound, the same way as it is transparent for neutrinos. In the presence of magnetic field the electron sound is coupled with electromagnetic radiation and form the fast magnetosonic wave. We find that electron sound is generated by superfluid vortices in the stellar core. Thermally excited helical vortex waves produce fast magnetosonic waves in the stellar crust which propagate toward the surface and transform into outgoing electromagnetic radiation. The vortex radiation has the spectral index -0.45 and can explain nonthermal radiation of middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The radiation is produced in the stellar interior which allows direct determination of the core temperature. Comparing the theory with available spectra observations we find that the core temperature of the Vela pulsar is T=8*10^8K, while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is the first measurement of the temperature of a neutron star core. The temperature estimate rules out equation of states incorporating Bose condensations of pions or kaons and quark matter in these objects. Based on the temperature estimate and cooling models we determine the critical temperature of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which agrees well with recent data on behavior of nucleon interactions at high energies. Another finding is that in the middle aged neutron stars the vortex radiation, rather then thermal conductivity, is the main mechanism of heat transfer from the stellar core to the surface. Electron sound opens a perspective of direct spectroscopic study of superdense matter in the neutron star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa

    Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e. absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in the literature: (i) Random overlap, both with and without resorting and rebinning, (ii) equivalent extinction and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In three-dimensional models such as GCMs it is too slow, however, and equivalent extinction can provide a speed-up of at least a factor of three with only a minor loss of accuracy while at the same time retaining the flexibility gained by combining k-coefficients computed for each gas individually. Pre-mixed opacities are significantly less flexible, and we also find that particular care must be taken when using this method in order to to adequately resolve steep variations in composition at important chemical equilibrium boundaries. We use the random overlap method with resorting and rebinning in our one-dimensional atmosphere model and equivalent extinction in our GCM, which allows us to e.g. consistently treat the feedback of non-equilibrium chemistry on the total opacity and therefore the calculated P–T profiles in our modelsWe thank the referee, Mark Marley, for comments that significantly improved the paper. This work is partly supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). D.S.A. acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. J.M. acknowledges the support of a Met Office Academic Partnership secondment. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Super-computer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    A Hybrid Line List for CH4 and Hot Methane Continuum

    Get PDF
    Molecular line lists (a catalogue of transition frequencies and line strengths) are important for modelling absorption and emission processes in atmospheres of different astronomical objects, such as cool stars and exoplanets. In order to be applicable for high temperatures, line lists for molecules like methane must contain billions of transitions, which makes their direct (line-by-line) application in radiative transfer calculations impracticable. Here we suggest a new, hybrid line list format to mitigate this problem, based on the idea of temperature-dependent absorption continuum. Methods. The line list is partitioned into a large set of relatively weak lines and a small set of important, stronger lines. The weaker lines are then used either to construct a temperature-dependent (but pressure-independent) set of intensity cross sections or are blended into a greatly reduced set of super-lines. The strong lines are kept in the form of temperature independent Einstein A coefficients. Results. A line list for methane is constructed as a combination of 17 million strong absorption lines relative to the reference absorption spectra and a background methane continuum in two temperature-dependent forms, of cross sections and super-lines. This approach eases the use of large high temperature line lists significantly as the computationally expensive calculation of pressure dependent profiles only need to be performed for a relatively small number of lines. Both the line list and cross sections were generated using a new 34 billion methane line list (34 to10), which extends the 10to10 line list to higher temperatures (up to 2000 K). The new hybrid scheme can be applied to any large line lists containing billions of transitions. We recommend to use super-lines generated on a high resolution grid based on resolving power R = 1,000,000 to model the molecular continuum as a more flexible alternative to the temperature dependent cross sections

    Implications of Hyperon Pairing for Cooling of Neutron Stars

    Get PDF
    The implications of hyperon pairing for the thermal evolution of neutron stars containing hyperons are investigated. The outcome of cooling simulations are compared for neutron star models composed only of nucleons and leptons, models including hyperons, and models including pairing of hyperons. We show that lambda and neutron pairing suppresses all possible fast neutrino emission processes in not too massive neutron stars. The inclusion of lambda pairing yields better agreement with X-ray observations of pulsars. Particularly, the surface temperatures deduced from X-ray observations within the hydrogen atmosphere model are more consistent with the thermal history of neutron stars containing hyperons, if the critical temperature for the onset of lambda and nucleon pairing is not too small.Comment: 7 pages, 3 figures. To be published in ApJL. The postscript and additional tables can be found at http://www.physik.uni-muenchen.de/sektion/suessmann/astro/cool/schaab.089

    Progress toward ultra-stable lasers for use in space

    Get PDF
    This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies

    Non-equilibrium beta processes in superfluid neutron star cores

    Full text link
    The influence of nucleons superfluidity on the beta relaxation time of degenerate neutron star cores, composed of neutrons, protons and electrons, is investigated. We numerically calculate the implied reduction factors for both direct and modified Urca reactions, with isotropic pairing of protons or anisotropic pairing of neutrons. We find that due to the non-zero value of the temperature and/or to the vanishing of anisotropic gaps in some directions of the phase-space, superfluidity does not always completely inhibit beta relaxation, allowing for some reactions if the superfluid gap amplitude is not too large in respect to both the typical thermal energy and the chemical potential mismatch. We even observe that if the ratio between the critical temperature and the actual temperature is very small, a suprathermal regime is reached for which superfluidity is almost irrelevant. On the contrary, if the gap is large enough, the composition of the nuclear matter can stay frozen for very long durations, unless the departure from beta equilibrium is at least as important as the gap amplitude. These results are crucial for precise estimation of the superfluidity effect on the cooling/slowing-down of pulsars and we provide online subroutines to be implemented in codes for simulating such evolutions.Comment: 11 pages, 6 Figs., published, minor changes, subroutines can be found on line at http://luth2.obspm.fr/~etu/villain/Micro/Resolution.htm
    corecore