29 research outputs found

    Advanced imaging techniques in cerebrovascular disease

    Get PDF
    © 2020 Shalini Ambika AmukotuwaThis dissertation aims to investigate how advanced imaging techniques can improve diagnosis, prognostication and treatment delivery in patients with cerebrovascular disease. Six original publications are presented in which perfusion imaging and new software algorithms are used to address clinical need in two specific cerebrovascular disease entities: acute ischemic stroke (AIS) and dural arteriovenous fistulas (DAVFs). AIS patients with anterior circulation large vessel occlusions (LVO) can be successfully treated with mechanical thrombectomy. Patient triage to thrombectomy requires identification of an LVO, the target of therapy, as well as the likelihood of benefit from reperfusion and the potential risk of complication. This assessment must be accurate, fast and efficient since stroke is a time-critical emergency. This poses a challenge for stroke centres because an increasing number of patients are being screened since extension of the thrombectomy window to 24 hours. Additionally, non-tertiary level hospitals are now required to perform acute stroke imaging despite lacking around-the-clock neuroradiology expertise. The first four publications explore how perfusion imaging and automated software algorithms can be used to expedite triage while maintaining high diagnostic accuracy for identifying patients who are likely to benefit from treatment. The first study introduces and describes a new fully-automated deterministic software algorithm for detecting LVOs on computed tomography (CT) angiography, then validates it in a large cohort of 926 AIS patients that was enriched for LVOs. The algorithm had high sensitivity (97%) and moderate specificity (74%) for detecting LVOs. The second study then applied this algorithm to a consecutive cohort of 477 “code stroke” patients presenting to a large regional hospital, with the aim of field testing it in the real world clinical setting where automated LVO detection tools are most likely to be used. The high sensitivity (94%) and negative predictive value (98%), combined with fast processing times, suggest that it can be used as a screening tool to assist radiologists and expedite diagnosis of LVOs. Patients with LVOs who have large infarct cores are unlikely to benefit from thrombectomy and have an increased risk of complication. CT perfusion (CTP) with fully automated post-processing is widely used to exclude patients with large infarct cores from treatment. Previous studies that validated CTP for this purpose had some key limitations. These were addressed in the third study, which sought to determine whether automated estimation of the infarct core on perfusion, based on reduced relative cerebral blood flow (rCBF), is sufficiently accurate for patient triage to thrombectomy. A novel approach was adopted, allowing almost perfectly temporally and volumetrically matched diffusion and perfusion data to be compared in a cohort of 119 prospectively enrolled patients. 94% of patients were correctly triaged using reduced rCBF, suggesting that fully automated perfusion-based measurement of the infarct core can be used for individual patient triage. Despite widespread use of CT, magnetic resonance imaging (MRI) remains the first-line modality for stroke patients in Europe and Asia. One of the most time-consuming sequences is T2*-weighted gradient recalled echo (T2*GRE), which is used to detect haemorrhage that contraindicates reperfusion therapies. Dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI), which is used primarily to delineate the ischemic penumbra, is also sensitive to haemorrhage. The agreement between DSC-PWI and T2*GRE for detection of haemorrhage was assessed in the fourth study on 393 MRI scans from a cohort of 221 AIS patients. Almost perfect agreement (k > 0.90) was shown for detection of acute haemorrhage. This suggests that DSC-PWI is sufficient for haemorrhage screening when it is included in the AIS MRI protocol. Arterial spin label (ASL) is an entirely non-invasive MR perfusion technique that is an alternative to DSC-PWI. While its use in AIS is limited, it has been serendipitously discovered that ASL signal in venous structures indicates the presence of shunting. Intracranial DAVFs are a type of shunting lesion that can be difficult to detect on structural imaging. The diagnostic performance and added value of ASL for detection of DAVFs was assessed in the fifth study, in a cohort of 156 patients. Venous ASL signal had a high sensitivity (94%), negative predictive value (98%) and specificity (88%) for the presence a DAVF. Including ASL in the MRI protocol improved diagnostic confidence and performance. The sixth study assessed the accuracy of ASL for identifying cortical vein drainage, the main risk factor for haemorrhage in DAVF patients. In a cohort of 34 patients, ASL was found to have a sensitivity of 91% and specificity of 96% for the presence of cortical vein drainage. These findings suggest that an MRI protocol augmented with ASL can be used to non-invasively screen for DAVFs and differentiate between high-risk fistulas requiring treatment and low-risk lesions that can be managed with observation. To conclude, a summary of the findings is presented along with the impact of the work, its limitations and future directions for research

    Where have our patients gone? The impact of COVID-19 on stroke imaging and intervention at an Australian stroke center

    Full text link
    INTRODUCTION: Australia has fortunately had a low prevalence coronavirus disease 2019 (COVID-19), and our healthcare system has not been overwhelmed. We aimed to determine whether, despite this, a decline in acute stroke presentations, imaging and intervention occurred during the pandemic at a busy stroke centre. METHODS: The number of 'code stroke' activations, multimodal CTs and endovascular clot retrievals (ECRs) performed during the pandemic period (3/1/2020-5/10/2020) at a large comprehensive stroke centre was compared against the pre-pandemic period (3/1/2019-1/31/2019) using Z-statistics. Year-on-year comparison of the number of patients with large vessel occlusions (LVOs) and ECRs performed per month was also made. RESULTS: The number of 'code stroke' activations and patients undergoing multimodal CT per month decreased significantly (P < 0.0025) following lockdown on 29th March. The number of ECRs also decreased (P = 0.165). The nadir in the weekly number of CTs coincided with lockdown and the peak of new COVID-19 cases. The number of patients with LVOs and ECRs increased by 15% and 14%, respectively, in March but decreased by 55% and 48%, respectively, in April. CONCLUSIONS: The significant decrease in volume of 'code stroke' activations and acute stroke imaging following lockdown was accompanied by a concomitant decrease in patients with LVOs and ECRs. The decrease in imaging was therefore not driven purely by patients with mild strokes and stroke mimics, but also included those with severe strokes. Since Australia had a low prevalence of COVID-19, this observed decrease cannot be attributed to hospital congestion and is instead likely driven by patient fear

    Tuberculosis masquerading as malignancy: a multimodality approach to the correct diagnosis - a case report.

    Get PDF
    BACKGROUND: Extrapulmonary tuberculosis is one of the great mimickers of medicine, and often masquerades as malignancy. As a result, patients may be referred to oncologists and surgeons for further evaluation and management, delaying the institution of appropriate anti-tuberculous drug therapy. CASE PRESENTATION: We present the case of a 21 year old man with tuberculous osteomyelitis, who was referred to the Bone and Soft Tissue Sarcoma Service at our institution with a provisional diagnosis of malignancy. Further investigation revealed extensive retroperitoneal abdominal and pelvic lymphadenopathy. The recognition of certain patterns on imaging, and finally the isolation of Mycobacterium tuberculosis from tissue samples obtained under image guidance, enabled the correct diagnosis to be made. CONCLUSION: This case highlights the importance of remaining cognisant of the protean manifestations of extrapulmonary tuberculosis, and illustrates the advantage of a clinically directed multi-modality imaging approach to diagnosis

    The utility of arterial spin labelled perfusion-weighted magnetic resonance imaging in measuring the vascularity of high grade gliomas – A prospective study

    No full text
    Background: Dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) currently remains the gold standard technique for measuring cerebral perfusion in glioma diagnosis and surveillance. Arterial spin labelling (ASL) PWI is a non-invasive alternative that does not require gadolinium contrast administration, although it is yet to be applied in widespread clinical practice. This study aims to assess the utility of measuring signal intensity in ASL PWI in predicting glioma vascularity by measuring maximal tumour signal intensity in patients based on pre-operative imaging and comparing this to maximal vessel density on histopathology. Methods: Pseudocontinuous ASL (pCASL) and DSC images were acquired pre-operatively in 21 patients with high grade gliomas. The maximal signal intensity within the gliomas over a region of interest of 100 mm2 was measured and also normalised to the contralateral cerebral cortex (nTBF-C), and cerebellum (nTBF-Cb). Maximal vessel density per 1 mm2 was determined on histopathology using CD31 and CD34 immunostaining on all participants. Results: Using ASL, statistically significant correlation was observed between maximal signal intensity (p < 0.05) and nTBF-C (p < 0.05) to maximal vessel density based on histopathology. Although a positive trend was also observed nTBF-Cb, this did not reach statistical significance. Using DSC, no statistically significant correlation was found between signal intensity, nTBF-C and nTBF-Cb. There was no correlation between maximal signal intensity between ASL and DSC. Average vessel density did not correlate with age, sex, previous treatment, or IDH status. Conclusions: ASL PWI imaging is a reliable marker of evaluating the vascularity of high grade gliomas and may be used as an adjunct to DSC PWI
    corecore