38 research outputs found

    Rational Synthesis of Fullerenes

    Get PDF
    Fullerenes are a unique family of carbon-based cage molecules, which attract interest because of their remarkable properties and potential applications. Most effort so far has been focused on the study of C60 and C70, whereas other members of the huge fullerene family remain poorly explored. One of the main challenges in this field is the developing of the synthetic methods, which are suitable for the production of these unique materials in isomer-pure form in macroscopic amounts. Here, we review studies toward the rational synthesis of fullerenes from molecular precursors that have been published to date. The scope and limitation of the zipping strategy are discussed. The relevance and prospects for construction of the fullerene cages and related carbon-based nanostructures via cyclodehydrofluorination (C─F bond activation) are highlighted

    Alumina-Mediated π-Activation of Alkynes

    Get PDF

    Carbon Origami via an Alumina-Assisted Cyclodehydrofluorination Strategy

    Get PDF
    The synthesis of pristine non‐planar nanographenes (NGs) via a cyclodehydrofluorination strategy is reported and the creation of highly strained systems via alumina‐assisted C−F bond activation is shown. Steric hindrance could execute an alternative coupling program leading to rare octagon formation offering access to elusive non‐classical NGs. The combination of two alternative ways of folding could lead to the formation of various 3D NG objects, resembling the Japanese art of origami. The power of the presented “origami” approach is proved by the assembly of 12 challenging nanographenes that are π‐isoelectronic to planar hexabenzocoronene but forced out of planarity

    Influence of Dispersion Interactions on the Thermal Desorption of Nonplanar Polycyclic Aromatic Hydrocarbons on HOPG

    Get PDF
    A combination of low energy ion beam deposition and mass resolved thermal desorption spectroscopy is applied to analyze the binding behavior of two nonplanar polycyclic aromatic hydrocarbons (PAHs) to highly oriented pyrolytic graphite (HOPG) surfaces—also concerning their lateral dispersion interactions. In particular, the fullerene precursor C60H30 (FPC) and rubrene C42H28 are studied. Due to their smaller contact areas, both molecules exhibit significantly weaker binding energies to the HOPG surface compared to planar PAHs of similar size: C60H30 is bound to the surface by 3.04 eV, which is 0.6 eV lower than for a fully planar homologue. For rubrene, an isolated molecule–substrate binding energy of 1.59 eV is found, which is about 1 eV less than that of the corresponding planar homologue hexabenzocoronene C42H18. In contrast to FPC, rubrene shows a significant (intermolecular) lateral dispersion contribution to the binding energy as the submonolayer coverage increases

    An Indacenopicene‐based Buckybowl Catcher for Recognition of Fullerenes

    Get PDF
    A novel buckybowl catcher with an extended π-surface has been synthesized via cross-coupling of two bowl shaped bromoindacenopicene moieties with a tolyl linker. The obtained catcher has been unambiguously characterized by 2D-NMR and mass spectrometry. DFT calculations indicate that the curved shape of the receptor moieties is favourable for binding fullerenes. Effective binding was confirmed for interactions with C60_{60} and C70_{70} utilizing NMR spectroscopy and isothermal titration calorimetry (ITC). The resulting binding values show a higher affinity of the catcher towards C70_{70} over C60_{60}. The designed catcher demonstrated the fundamental possibility of creating sensors for spherical aromaticity

    500-fold amplification of small molecule circularly polarised luminescence through circularly polarised FRET

    Get PDF
    Strongly dissymmetric circularly polarised (CP) luminescence from small organic molecules could transform a range of technologies, such as display devices. However, highly dissymmetric emission is usually not possible with small organic molecules, which typically give dissymmetric factors of photoluminescence (gPL) less than 10-2. Here we describe an almost 103-fold chiroptical amplification of a π-extended superhelicene when embedded in an achiral conjugated polymer matrix. This combination increases the |gPL| of the superhelicene from approximately 3 × 10-4 in solution to 0.15 in a blend film in the solid-state. We propose that the amplification arises not simply through a chiral environment effect, but instead due to electrodynamic coupling between the electric and magnetic transition dipoles of the polymer donor and superhelicene acceptor, and subsequent CP Förster resonance energy transfer. We show that this amplification effect holds across several achiral polymer hosts and thus represents a simple and versatile approach to enhance the g-factors of small organic molecules

    Annulation Cascade of Aryl Alkynes Induced by Alumina‐Mediated CF Bond Activation

    No full text
    Alumina‐mediated CF activation (AmCFA) is an established method to generate incipient phenyl cation (IPC) through polarization of C(aryl)F bonds. Herein, it is reported that AmCFA can be used to induce intramolecular arylation of aryl alkynes containing one, two, and three triple bonds. During the reaction, a single formally eliminated hydrogen fluoride (HF) leads to the formation of two, three, and four CC bonds, respectively. Thus, the transformation gives rapid access to π‐extension and serves as an interesting example of solid‐state rational domino annulation enabling the bottom‐up construction of nanographenes
    corecore