11 research outputs found

    Flashlights: Properties of Highly Magnified Images Near Cluster Critical Curves in the Presence of Dark Matter Subhalos

    Full text link
    Dark matter subhalos with extended profiles and density cores, and globular stars clusters of mass 106108M10^6-10^8 M_\odot, that live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work we study the effect such subhalos have on lensed images, and compare to the case of more well studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive and negative parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative parity side, subhalos with cores larger than about 5050\,pc do not generate any images with magnification above 100\sim 100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: subhalos create pixel-to-pixel flux variations of 0.1\gtrsim 0.1 magnitudes, on the positive parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 11'' away from the critical curves of massive clusters.Comment: ApJ, submitted, 21 pages, 17 figure

    Flashlights: An Off-Caustic Lensed Star at Redshift zz = 1.26 in Abell 370

    Full text link
    We report the discovery of a transient seen in a strongly lensed arc at redshift zs=1.2567z_{\rm s}=1.2567 in \emph{Hubble Space Telescope} imaging of the Abell 370 galaxy cluster. The transient is detected at 29.51±0.1429.51\pm0.14 AB mag in a WFC3/UVIS F200LP difference image made using observations from two different epochs, obtained in the framework of the \emph{Flashlights} program, and is also visible in the F350LP band (mF350LP30.53m_{\rm F350LP}\sim30.53 AB). The transient is observed on the negative-parity side of the critical curve at a distance of 0.6\sim 0.6'' from it, greater than previous examples of lensed stars. The large distance from the critical curve yields a significantly smaller macro-magnification, but our simulations show that bright, O/B-type supergiants can reach sufficiently high magnifications to be seen at the observed position and magnitude. In addition, the observed transient image is a trailing image with an observer-frame time delay of +0.8\sim+0.8 days from its expected counterpart, so that any transient lasting for longer than that should have also been seen on the minima side and is thus excluded. This, together with the blue color we measure for the transient (mF200LPmF350LP[0.7,1]m_{\rm F200LP} - m_{\rm F350LP} \sim [-0.7,-1] AB mag), rules out most other transient candidates such as (kilo)novae, for example, and makes a lensed star the prime candidate. Assuming the transient is indeed a lensed star as suggested, many more such events should be detected in the near future in cluster surveys with the \emph{Hubble Space Telescope} and \emph{James Webb Space Telescope}.Comment: 11 pages. 5 figures. Comments are welcom

    Flashlights: More than A Dozen High-Significance Microlensing Events of Extremely Magnified Stars in Galaxies at Redshifts z=0.7-1.5

    Full text link
    Once only accessible in nearby galaxies, we can now study individual stars across much of the observable universe aided by galaxy-cluster gravitational lenses. When a star, compact object, or multiple such objects in the foreground galaxy-cluster lens become aligned, they can magnify a background individual star, and the timescale of a magnification peak can limit its size to tens of AU. The number and frequency of microlensing events therefore opens a window into the population of stars and compact objects, as well as high-redshift stars. To assemble the first statistical sample of stars in order to constrain the initial mass function (IMF) of massive stars at redshift z=0.7-1.5, the abundance of primordial black holes in galaxy-cluster dark matter, and the IMF of the stars making up the intracluster light, we are carrying out a 192-orbit program with the Hubble Space Telescope called "Flashlights," which is now two-thirds complete owing to scheduling challenges. We use the ultrawide F200LP and F350LP long-pass WFC3 UVIS filters and conduct two 16-orbit visits separated by one year. Having an identical roll angle during both visits, while difficult to schedule, yields extremely clean subtraction. Here we report the discovery of more than a dozen bright microlensing events, including multiple examples in the famous "Dragon Arc" discovered in the 1980s, as well as the "Spocks" and "Warhol" arcs that have hosted already known supergiants. The ultradeep observer-frame ultraviolet-through-optical imaging is sensitive to hot stars, which will complement deep James Webb Space Telescope infrared imaging. We are also acquiring Large Binocular Telescope LUCI and Keck-I MOSFIRE near-infrared spectra of the highly magnified arcs to constrain their recent star-formation histories

    BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

    Get PDF
    In this work, we present a constraint on the abundance of supergiant (SG) stars at redshift z ≈ 1, based on recent observations of astrongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultradeep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies thatproduce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The largercoverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraintsup to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for thenumber of high-redshift multiply lensed galaxies detected in future observations with the James Webb Space Telescope (JWST).Then we focus on a previously known lensed galaxy at z = 1.0054, nicknamed Spock, which contains four previously reportedtransients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of suchevents. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) ofSG stars at z = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a numberdensity of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105 L for red stars), whichis below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2 for starswith luminosities between 105 L and 6 × 105 L. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions forfuture observations with JWST’s NIRcam. We find that in observations made with the F200W filter that reach 29 mag AB, if cool red SG stars exist at z ≈ 1 beyond the HD limit, they should be easily detected in this arc

    BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

    Full text link
    We present a constraint on the abundance of supergiant (SG) stars at redshift z approx. 1, based on recent observations of a strongly lensed arc at this redshift. First we derive a free-form model of MACS J0416.1-2403 using data from the BUFFALO program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allows us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ~ 1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply-lensed galaxies detected in future observations with JWST. Then we focus on a previously known lensed galaxy at z=1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and compute the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars at z=1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (L ~ 6×105L6\times10^5 L_{\odot}) that is below 400 stars per sq. kpc, or (2) the absence of stars beyond the HD limit but with a SG number density of ~ 9000 per sq. kpc for stars with luminosities between 10510^5 and 6×1056\times10^5. This is equivalent to one SG star per 10x10 pc2^2. We finally make predictions for future observations with JWST's NIRcam. We find that in observations made with the F200W filter that reach 29 mag AB, if cool red SG stars exist at z~1 beyond the HD limit, they should be easily detected in this arcComment: 24 pages & 18 figure

    Anomalies in Gravitational-Lensed Images Revealing Einstein Rings Modulated by Wavelike Dark Matter

    No full text
    International audienceElucidating the nature of Dark Matter (DM), which does not interact with light and which interacts with known matter primarily or only through gravity, is one of the principal quests in physics. Leading candidates for DM are weakly interacting massive particles (WIMPs) or ultralight bosons (axions), at opposite extremes in mass scales, that have been postulated by competing theories to solve deficiencies in the Standard Model of particle physics. Whereas DM WIMPs behave like discrete particles (ϱ\varrhoDM), quantum interference between DM axions is manifested as waves (ψ\psiDM). Here, we show that gravitational lensing leaves signatures in multiply-lensed images of background galaxies that reveal whether the foreground lensing galaxy inhabits a ϱ\varrhoDM or ψ\psiDM halo. Whereas ϱ\varrhoDM lens models leave well documented anomalies between the predicted and observed brightnesses and positions of multiply-lensed images, ψ\psiDM lens models correctly predict the level of anomalies left over by ϱ\varrhoDM lens models. More challengingly, when subjected to a battery of tests for reproducing the quadruply-lensed triplet images in the system HS 0810+2554, ψ\psiDM is able to reproduce all aspects of this system whereas ϱ\varrhoDM often fails. The growing success of ψ\psiDM in reproducing astrophysical observations tilt the balance toward new physics invoking axions

    BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

    Get PDF
    International audienceWe present a constraint on the abundance of supergiant (SG) stars at redshift z approx. 1, based on recent observations of a strongly lensed arc at this redshift. First we derive a free-form model of MACS J0416.1-2403 using data from the BUFFALO program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allows us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ~ 1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply-lensed galaxies detected in future observations with JWST. Then we focus on a previously known lensed galaxy at z=1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and compute the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars at z=1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (L ~6×105L6\times10^5 L_{\odot}) that is below 400 stars per sq. kpc, or (2) the absence of stars beyond the HD limit but with a SG number density of ~ 9000 per sq. kpc for stars with luminosities between 10510^5 and 6×1056\times10^5. This is equivalent to one SG star per 10x10 pc2^2. We finally make predictions for future observations with JWST's NIRcam. We find that in observations made with the F200W filter that reach 29 mag AB, if cool red SG stars exist at z~1 beyond the HD limit, they should be easily detected in this ar

    BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

    No full text
    International audienceWe present a constraint on the abundance of supergiant (SG) stars at redshift z approx. 1, based on recent observations of a strongly lensed arc at this redshift. First we derive a free-form model of MACS J0416.1-2403 using data from the BUFFALO program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allows us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ~ 1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply-lensed galaxies detected in future observations with JWST. Then we focus on a previously known lensed galaxy at z=1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and compute the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars at z=1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (L ~6×105L6\times10^5 L_{\odot}) that is below 400 stars per sq. kpc, or (2) the absence of stars beyond the HD limit but with a SG number density of ~ 9000 per sq. kpc for stars with luminosities between 10510^5 and 6×1056\times10^5. This is equivalent to one SG star per 10x10 pc2^2. We finally make predictions for future observations with JWST's NIRcam. We find that in observations made with the F200W filter that reach 29 mag AB, if cool red SG stars exist at z~1 beyond the HD limit, they should be easily detected in this ar

    BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

    No full text
    International audienceWe present a constraint on the abundance of supergiant (SG) stars at redshift z approx. 1, based on recent observations of a strongly lensed arc at this redshift. First we derive a free-form model of MACS J0416.1-2403 using data from the BUFFALO program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allows us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ~ 1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply-lensed galaxies detected in future observations with JWST. Then we focus on a previously known lensed galaxy at z=1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and compute the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars at z=1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (L ~6×105L6\times10^5 L_{\odot}) that is below 400 stars per sq. kpc, or (2) the absence of stars beyond the HD limit but with a SG number density of ~ 9000 per sq. kpc for stars with luminosities between 10510^5 and 6×1056\times10^5. This is equivalent to one SG star per 10x10 pc2^2. We finally make predictions for future observations with JWST's NIRcam. We find that in observations made with the F200W filter that reach 29 mag AB, if cool red SG stars exist at z~1 beyond the HD limit, they should be easily detected in this ar
    corecore