309 research outputs found

    Comparing the Effectiveness and Efficiency of Behavioral Skills Training and Brief Performance Feedback Interventions During the Training of Paraeducators Supporting Students with Autism Spectrum Disorders

    Get PDF
    Due to the increasing number of students in need of special education services and the shortages of licensed special education personnel, paraeducators have become a critical component in the education of students with autism in school settings. Due to this, the training of paraeducators is a critical concern for human service as well as educational settings. The literature has suggested performance feedback as the most widely researched intervention to address implementation deficiencies among educators and non-professional staff in schools. In addition, performance feedback in combination with other strategies has been established as effective when training paraprofessionals. However, despite their effectiveness, such approaches may require increased time and resources, thus compromising the feasibility of paraprofessional training in school settings. Therefore, the purpose of the following study aimed to demonstrate and extend the research base regarding the effectiveness of a brief performance feedback intervention. Further, this study attempted to evaluate the efficiency of brief performance feedback interventions when compared with more comprehensive, behaviorally based training approaches (i.e., Behavioral Skills Training). Finally, this study sought to strengthen the current literature base related to the training of paraeducators by improving areas of methodological weaknesses addressed in the presented review of the available literature. Results of present study suggested similar levels of effectiveness between the brief performance feedback intervention and Behavioral Skills Training and increased time efficiency of the brief performance feedback intervention over Behavioral Skills Training. Limitations of the current study and recommendations for future research and practice are also discussed

    Downscaling of fracture energy during brittle creep experiments

    Get PDF
    We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large-scale response of slow-propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high-resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high-resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics

    Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach

    Get PDF
    Observations of earthquake swarms and slow propagating ruptures on related faults suggest a close relation between the two phenomena. Earthquakes are the signature of fast unstable ruptures initiated on localized asperities while slow aseismic deformations are experienced on large stable segments of the fault plane. The spatial proximity and the temporal coincidence of both fault mechanical responses highlight the variability of fault rheology. However, the mechanism relating earthquakes and aseismic processes is still elusive due to the difficulty of imaging these phenomena of large spatiotemporal variability at depth. Here we present laboratory experiments that explore, in great detail, the deformation processes of heterogeneous interfaces in the brittle-creep regime. We track the evolution of an interfacial crack over 7 orders of magnitude in time and 5 orders of magnitude in space using optical and acoustic sensors. We explore the response of the system to slow transient loads and show that slow deformation episodes are systematically accompanied by acoustic emissions due to local fracture energy disorder. Features of acoustic emission activities and deformation rate distributions of our experimental system are similar to those in natural faults. On the basis of an activation energy model, we link our results to the Rate and State friction model and suggest an active role of local creep deformation in driving the seismic activity of earthquake swarms

    Degradation capability of the coastal environment adjacent to the Itata River in central Chile (36.5° S)

    Get PDF
    The response of the coastal ocean influenced by both river discharges and inputs of photosynthetically derived organic carbon product of upwelling, was evaluated by estimating rates of microbial hydrolysis of macromolecules with the goal of estimating the potential degradation capability of the coastal ecosystem off central Chile. Extracellular enzymatic activity (EEA) in seawater was dominated by aminopeptidase activity on substrate L-leucine-4-methyl-7-coumarinylamide (MCA-leu) (1.2 to 182 nmol l<sup>−1</sup> h<sup>−1</sup>) followed by 4-methylumbelliferyl-ß-D-glucoside (MUF-glu) (0.08–61 nmol l<sup>−1</sup> h<sup>−1</sup>) and 4-methylumbelliferyl-ß-D-cellobiose (MUF-cel) (0.15–7 nmol l<sup>−1</sup> h<sup>−1</sup>), with the highest rates measured during spring-summer. In riverine waters, extracellular enzymatic hydrolysis remained within the range of 45 to 131 nmol l<sup>−1</sup> h<sup>−1</sup> for MCA-leu and ca. 20 nmol l<sup>−1</sup> h<sup>−1</sup> for glucosidic substrates, year-round. Contrary to the EEA observed for the marine water column, surface sediment extracellular enzymatic hydrolysis of MCA-leu (0.04 to 6.13 nmol g<sup>−1</sup> dw h<sup>−1</sup>) was in the same order of magnitude as the rates observed for MUF-cel (0.004 to 5.1 nmol g<sup>−1</sup> dw h<sup>−1</sup>) and MUF-glu (0.007 to 10.5 nmol g<sup>−1</sup> dw h<sup>−1</sup>). Moreover, hydrolysis in sediments was characterized by higher rates during winter compared with spring-summer in the coastal and estuarine zone. The five years of data allowed us to evaluate the potential capability of microbial processing of organic carbon in the coastal area adjacent to the Itata river discharge where the increase in primary production in the productive seasons is accompanied by the increase in hydrolysis of macromolecules

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    Encapsulation of gold nanostructures and oil-in-water nanocarriers in microgels with biomedical potential

    Get PDF
    IndexaciĂłn: Scopus.Funding: This research was funded by FONDECYT 1161450, 1150744, 11130494 and 1170929, FONDEQUIP EQM160157, EQM170111, CONICYT-FONDAP 15130011, and CONICYT PhD Scholarship 21141137.Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 ”m were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11–12 ◩ C) than nanospheres (1–2 ◩ C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications. © 2018 by the authors.https://www.mdpi.com/1420-3049/23/5/120

    New technologies - new insights into the pathogenesis of hepatic encephalopathy

    Get PDF
    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance

    Sonication of intramedullary nails: Clinically-related infection and contamination

    Get PDF
    Background and Aim: Sonication is currently considered the best procedure for microbiological diagnosis of implant-related osteoarticular infection, but studies in nail-related infections are lacking. The study aim was to evaluate implant sonication after intramedullary nail explantation, and relate it to microbiological cultures and clinical outcome. Patients and Methods: A study was performed in two University Hospitals from the same city. Thirty-one patients with implanted nails were prospectively included, whether with clinical infection (8 cases) or without (23 cases). Retrieved nails underwent sonication according a previously published protocol. The clinical and microbiological outcome patient was related to the presence of microorganisms in the retrieved implant. Results: Positive results appeared in 15/31 patients (9 with polymicrobial infections) almost doubling those clinically infected cases. The most commonly isolated organisms were Staphylococcus epidermidis (19.2 %) and Staphylococcus aureus (15.4 %). A significant relationship was found between the presence of positive cultures and previous local superficial infection (p=0.019). The presence of usual pathogens was significantly related to clinical infection (p=0.005) or local superficial infection (p=0.032). All patients with positive cultures showed pain diminution or absence of pain after nail removal (15/15), but this only occurred in 8 (out of 16) patients with negative cultures. Conclusions: In patients with previously diagnosed infection or local superficial infection, study of the hardware is mandatory. In cases where pain or patient discomfort is observed, nail sonication can help diagnose the implant colonization with potential pathogens that might require specific treatment to improve the final outcomePart of this work was funded by grants from the Comunidad de Madrid (S2009/MAT-1472) and from the CONSOLIDER-INGENIO Program (FUNCOAT-CSD2008- 00023). DMM was funded by a grant from the Fundación Conchita Råbago de Jiménez Día

    Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture

    Get PDF
    As soon as an earthquake starts, the rupture and the propagation of seismic waves redistribute masses within the Earth. This mass redistribution generates in turn a long-range perturbation of the Earth gravitational field, which can be recorded before the arrival of the direct seismic waves. The recent first observations of such early signals motivate the use of the normal mode theory to model the elastogravity perturbations recorded by a ground-coupled seismometer or gravimeter. Complete modelling by normal mode summation is challenging due to the very large difference in amplitude between the prompt elastogravity signals and the direct P-wave signal. We overcome this problem by introducing a two-step simulation approach. The normal mode approach enables a fast computation of elastogravity signals in layered self-gravitating Earth models. The fast and accurate computation of gravity perturbations indicates instrument locations where signal detection may be achieved, and may prove useful in the implementation of a gravity-based earthquake early warning system

    Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California

    Get PDF
    Fracture and fault zones can channel fluid flow and transmit injection-induced pore pressure changes over large distances (>km), at which seismicity is rarely suspected to be human induced. We use seismicity analysis and hydrogeological models to examine the role of seismically active faults in inducing earthquakes. We analyze a potentially injection-induced earthquake swarm with three events above M4 near the White Wolf fault (WWF). The swarm deviates from classic main aftershock behavior, exhibiting uncharacteristically low Gutenberg-Richter b of 0.6, and systematic migration patterns. Some smaller events occurred southeast of the WWF in an area of several disposal wells, one of which became active just 5 months before the main swarm activity. Hydrogeological modeling revealed that wastewater disposal likely contributed to seismicity via localized pressure increase along a seismically active fault. Our results suggest that induced seismicity may remain undetected in California without detailed analysis of local geologic setting, seismicity, and fluid diffusion
    • 

    corecore