11 research outputs found

    Role of inflammatory pathways in insulin resistance development in obese subjects without comorbidities

    No full text
    L’obĂ©sitĂ© est une pathologie multifactorielle qui contribue au dĂ©veloppement de l’insulinorĂ©sistance (l’IR). De nos jours, mĂȘme si de nombreux travaux ont permis de rĂ©pondre Ă  plusieurs questions relatives Ă  la pathogenĂšse de l’IR, les mĂ©canismes cellulaires et molĂ©culaires qui sous-tendent la pathogenĂšse de l’IR ne sont pas encore complĂštement Ă©lucidĂ©s chez l’Homme. Deux hypothĂšses principales se sont dĂ©gagĂ©es de ces travaux.D’une part, certaines Ă©tudes suggĂšrent que le dĂ©faut primaire Ă  l’origine de l’IR se trouverait au niveau du tissu adipeux, qui en libĂ©rant dans la circulation systĂ©mique des adipokines, des cytokines inflammatoires et des acides gras contribue au dĂ©veloppement d’une inflammation et d’une hyperlipidĂ©mie systĂ©mique. Ces deux paramĂštres exercent des effets dĂ©lĂ©tĂšres sur la sensibilitĂ© Ă  l’insuline des autres organes comme le muscle et le foie. D’autre part, le muscle Ă©tant l’organe gluco-rĂ©gulateur par excellence en situation postprandiale, d’autres Ă©tudes le place au cƓur de la physiopathologie de l’IR.MalgrĂ© ces controverses, aucune Ă©tude n’a Ă  ce jour explorĂ© simultanĂ©ment l’inflammation et l’IR systĂ©mique /tissulaire dans le muscle et le tissu adipeux chez un mĂȘme sujet. Dans ce contexte, l’objectif de ce travail de thĂšse Ă©tait de mieux comprendre les mĂ©canismes impliquĂ©s dans la mise en place de l’IR. Il s’inscrit dans le cadre d’un projet de recherche translationnel, qui compare dans une cohorte de femmes mĂ©nopausĂ©es, des sujets minces Ă  des sujets obĂšses de grade I insulinosensibles (OIS) et insulinorĂ©sistants (OIR). Plusieurs paramĂštres systĂ©miques et tissulaires (lipotoxicitĂ©, inflammation et activation du rĂ©cepteur toll like receptor 4 (TLR4)) impliquĂ©s dans la physiopathologie de l’IR ont Ă©tĂ© analysĂ©s chez ces sujets.Les rĂ©sultats de cette Ă©tude mettent en avant l’importance de l’activation des voies de l’immunitĂ© innĂ©e dans la rĂ©gulation de la sensibilitĂ© Ă  l’insuline. Ainsi, alors qu’aucune inflammation systĂ©mique n’est dĂ©tectĂ©e, on observe une activation diffĂ©rentielle des voies de signalisation du rĂ©cepteur TLR4 de l’immunitĂ© innĂ©e entre le tissu musculaire et le tissu adipeux des sujets OIR. La voie MyD88-dĂ©pendante qui est une voie pro-inflammatoire, est activĂ©e dans le muscle squelettique de ces sujets et est associĂ©e Ă  une IR au sein de ce tissu. A l’inverse, la voie TRIF-dĂ©pendante qui est une voie anti-inflammatoire est activĂ©e au sein du tissu adipeux et permet le maintien de la sensibilitĂ© Ă  l’insuline. Ce maintien de la rĂ©ponse Ă  l’insuline se fait grĂące l’induction du systĂšme interfĂ©ron et de l’enzyme anti-oxydante manganĂšse superoxyde dismutase (MnSOD). Dans ce travail, nous montrons d’une part, que le dĂ©faut de rĂ©ponse Ă  l’insuline musculaire se trouve au cƓur de la physiopathologie de l’IR chez les sujets obĂšses de grade I. D’autre part, ces rĂ©sultats mettent en exergue l’importance de la balance de rĂ©gulation des voies de l’immunitĂ© innĂ©e « MyD88 » et « TRIF » dans le maintien de la sensibilitĂ© Ă  l’insuline.Obesity is a multifactorial disease promoting the development of insulin resistance (IR). Nowadays, cellular and molecular mechanisms underlying IR pathogenesis in humans are not fully understood although many studies have been attempted to improve our knowledge. Tow hypotheses arose from these researches.On one hand, several studies have led to the idea that a chronic inflammatory state combined with adipose tissue (AT) dysfunction could be the so-called “central mechanism” leading to IR. AT dysfunction is associated with increase in the release of inflammatory adipokines/cytokines and free fatty acid (FFA), leading to systemic inflammation and lipid overload. These latter parameters would have deleterious effects on diverse organs such as muscles and liver by affecting their insulin sensitivityOn the other hand, skeletal muscle (SM) is responsible for 80% of glucose uptake and metabolism in postprandial state and muscle failure in this function is often considered as the first defect causing IR.Interestingly, despite these controversies, in human, insulin sensitivity and the onset of inflammation have so far never been investigated simultaneously at systemic level and locally in SM and AT in the same individual.In this context, the aim of this thesis was to better understand the mechanisms involved in IR development in grade I obese subject. It is based on a translational research project that compares in a cohort of postmenopausal women, lean subjects with grade I obese insulin-sensitive (OIS) and insulin-resistant (OIR) subjects. Several systemic and tissue parameters (lipotoxicity, inflammation and toll like receptor 4 (TLR4) activation), involved in the IR pathophysiology were analyzed in these subjects.Our results highlight the importance of innate immunity pathways activation in the regulation of insulin sensitivity. Thus, while no inflammation was detected at the systemic level, there is a differential activation of innate immune TLR4 signaling pathways between muscle and AT of OIR subjects. The MyD88-dependent pathway, a pro-inflammatory pathway, is activated in their SM and is associated with IR in this tissue. Conversely, the TRIF-dependent pathway which is an anti-inflammatory pathway is activated in the AT thus maintaining insulin sensitivity in this tissue. This is supported by the induction of interferon system and the antioxidant enzyme manganese superoxide dismutase (MnSOD).In this work, we show that SM defect is the central mechanism which determines IR in grade I obese subject. We have also highlighted the importance of regulation of the balance between the two innate immunity pathways "MyD88" and "TRIF" in maintaining insulin sensitivity

    Inflammation and fibrosis in skeletal muscle.

    No full text
    <p><b>Panel A:</b> Total macrophages (CD68<sup>+</sup>), and pro-inflammatory (CD68<sup>+</sup>/CD86<sup>+</sup>) and anti-inflammatory (CD68<sup>+</sup>/CD206<sup>+</sup>) macrophages were counted after staining in skeletal muscle. For CD68, and CD86 or CD206 markers, four and two non-consecutive entire sections per subject were respectively analyzed for 6 CT, 6 OIS and 5 OIR subjects. Data are expressed as mean ± SEM. <b>Panel B:</b> Relative quantification of Col5A, Col6A, TNFα, IL-1ÎČ, IL-6 and MCP-1, mRNA expression in skeletal muscle (n<sub>CT</sub> = 10, n<sub>OIS</sub> = 11, n<sub>OIR</sub> = 9). Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0. <b>Panel C:</b> Western blot analysis of IÎșBα expression in skeletal muscle (n<sub>CT</sub> = 10, n<sub>OIS</sub> = 9, n<sub>OIR</sub> = 9). The graph represents IÎșBα protein quantification after correction by α/ÎČ tubulin protein levels, used as an indicator of protein loading. Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0. $ P<sub>OIR <i>vs</i>. CT</sub> = 0.04.</p

    Insulin response in SAT.

    No full text
    <p><b>Panel A:</b> Western blot analysis of P-Akt/Akt <i>ratio</i> in SAT with and without incubation with insulin (n<sub>CT</sub> = 9, n<sub>OIS</sub> = 10, n<sub>OIR</sub> = 9). The graph represents P-Akt protein quantification after correction by total Akt protein levels, used as an indicator of protein loading. Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0. § P<sub>CT±insulin</sub> = 0.008; P<sub>OIS±insulin</sub> = 0.002; P<sub>OIR±insulin</sub> = 0.004. <b>Panel B:</b> Fold induction of P-Akt/Akt level in SAT after insulin stimulation. Data are expressed as mean ± SEM. <b>Panels C and D:</b> Correlations (Spearman analysis) between insulin-stimulated P-Akt/Akt fold induction in SAT and HOMA<sub>IR</sub> (C) or GIR (D).</p

    Insulin response in skeletal muscle.

    No full text
    <p><b>Panel A:</b> Western blot analysis of P-Akt/Akt <i>ratio</i> in skeletal muscle with and without incubation with insulin (n<sub>CT</sub> = 10, n<sub>OIS</sub> = 11, n<sub>OIR</sub> = 8). The graph represents P-Akt protein quantification after correction by total Akt protein levels, used as an indicator of protein loading. Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0. § P<sub>CT±insulin</sub> = 0.002; P<sub>OIS±insulin</sub> = 0.002. P<sub>OIR±insulin</sub> = 0.129. <b>Panel B:</b> Fold induction of P-Akt/Akt in skeletal muscle after insulin stimulation. Data are mean ± SEM. $ P<sub>OIR <i>vs</i>. CT</sub> = 0.008 and # P<sub>OIR <i>vs</i>. OIS</sub> = 0.0005. <b>Panels C and D:</b> Correlations (Spearman analysis) between insulin-stimulated P-Akt/Akt fold induction in skeletal muscle and HOMA<sub>IR</sub> (C) or GIR (D).</p

    Inflammation and fibrosis in SAT.

    No full text
    <p><b>Panel A:</b> Total macrophages (CD68<sup>+</sup>), pro-inflammatory (CD68<sup>+</sup>/CD86<sup>+</sup>), and anti-inflammatory (CD68<sup>+</sup>/CD206<sup>+</sup>) macrophages were counted after staining in SAT. For CD68, and CD86 or CD206 markers, four and two non-consecutive entire sections per subject were analyzed for 7 CT, 5 OIS and 6 OIR subjects. Data are expressed as mean ± SEM. :P<sub>OIR<i>vs</i>.CT</sub>=0.008.<b>PanelB:</b>Adipocyteaveragesize(ÎŒm<sup>2</sup>)inSAT;10–15sectionspersubjectwererespectivelyanalyzedfor4subjectspergroup.Dataareexpressedasmean±SEM.<b>PanelC:</b>RelativequantificationofCol5A,Col6A,TNFα,IL−1ÎČ,IL−6andMCP−1mRNAexpressioninSAT(n<sub>CT</sub>=10,n<sub>OIS</sub>=11,n<sub>OIR</sub>=9).Dataareexpressedasmean±SEMandrelativelytoCTvalues,whichweresetat1.0.: P<sub>OIR <i>vs</i>. CT</sub> = 0.008. <b>Panel B:</b> Adipocyte average size (ÎŒm<sup>2</sup>) in SAT; 10–15 sections per subject were respectively analyzed for 4 subjects per group. Data are expressed as mean ± SEM. <b>Panel C:</b> Relative quantification of Col5A, Col6A, TNFα, IL-1ÎČ, IL-6 and MCP-1 mRNA expression in SAT (n<sub>CT</sub> = 10, n<sub>OIS</sub> = 11, n<sub>OIR</sub> = 9). Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0. P<sub>OIR <i>vs</i>. CT</sub> = 0.004. <b>Panel D:</b> Western blot analysis of IÎșBα expression in SAT (n<sub>CT</sub> = 9, n<sub>OIS</sub> = 8, n<sub>OIR</sub> = 8). The graph represents IÎșBα protein quantification after correction by α/ÎČ tubulin protein levels, used as an indicator of protein loading. Data are expressed as mean ± SEM and relatively to CT values, which were set at 1.0.</p
    corecore