93 research outputs found
Detection of DDoS Attacks using Enhanced FS with BRSA- based Deep Learning Model in IoT Environment
Network assaults and floods, are rising due to the increasing number of IoT devices, posing security and dependability concerns. These attacks cause a denial of service (DoS) and network interruption for IoT devices. Researchers have established multiple methods to track down assaults on weak IoT gadgets. This study provides a deep learning and swarm metaheuristic technique for detecting DDoS assaults in an Internet of Things (IoT) setting. The group search firefly method, a revolutionary improvement on the classic firefly algorithm, is used as a feature selection tool to zero in on the best candidates. In addition, the hyperparameters of the DarkNet are selected and optimized with the help of a suggested technique called the Boosted Reptile Search technique (BRSA) for effective botnet detection. The operatives of the red fox algorithm (RFO) and the triangular mutation operator (TMO) were used to effect this change. The TMO was utilized to progress the misuse phase of the RSA, whereas the RFO was used to improve the exploration phase. The suggested model is verified using the N-BaIoT dataset. Various cutting-edge methods were employed to evaluate and contrast the projected models efficacy. The outcome proves that the recommended approach is superior to alternatives in identifying multiclass botnet assaults
Recommended from our members
Where constructionism and critical realism converge: interrogating the domain of epistemological relativism
The paper interrogates the status, nature and significance of epistemological relativism as a key element of constructionism and critical realism. It finds that epistemological relativism is espoused by authorities in critical realism and marginalized or displaced in the field of management and organization studies, resulting in forms of analysis that are empirically, but not fully critically, realist. This evaluation prompts reflection on the question of whether, how and with what implications epistemological relativism might be recast at the heart of critical realist studies of management and organization
3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes
A novel mechanical cleavage method for synthesizing few-layer graphenes
A novel method to synthesize few layer graphene from bulk graphite by mechanical cleavage is presented here. The method involves the use of an ultrasharp single crystal diamond wedge to cleave a highly ordered pyrolytic graphite sample to generate the graphene layers. Cleaving is aided by the use of ultrasonic oscillations along the wedge. Characterization of the obtained layers shows that the process is able to synthesize graphene layers with an area of a few micrometers. Application of oscillation enhances the quality of the layers produced with the layers having a reduced crystallite size as determined from the Raman spectrum. Interesting edge structures are observed that needs further investigation
Toward visualization of nanomachines in their native cellular environment
The cellular nanocosm is made up of numerous types of macromolecular complexes or biological nanomachines. These form functional modules that are organized into complex subcellular networks. Information on the ultra-structure of these nanomachines has mainly been obtained by analyzing isolated structures, using imaging techniques such as X-ray crystallography, NMR, or single particle electron microscopy (EM). Yet there is a strong need to image biological complexes in a native state and within a cellular environment, in order to gain a better understanding of their functions. Emerging methods in EM are now making this goal reachable. Cryo-electron tomography bypasses the need for conventional fixatives, dehydration and stains, so that a close-to-native environment is retained. As this technique is approaching macromolecular resolution, it is possible to create maps of individual macromolecular complexes. X-ray and NMR data can be ‘docked’ or fitted into the lower resolution particle density maps to create a macromolecular atlas of the cell under normal and pathological conditions. The majority of cells, however, are too thick to be imaged in an intact state and therefore methods such as ‘high pressure freezing’ with ‘freeze-substitution followed by room temperature plastic sectioning’ or ‘cryo-sectioning of unperturbed vitreous fully hydrated samples’ have been introduced for electron tomography. Here, we review methodological considerations for visualizing nanomachines in a close-to-physiological, cellular context. EM is in a renaissance, and further innovations and training in this field should be fully supported
Cryo-electron tomography of cells: connecting structure and function
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms
Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography
Ultrastructure and intercellular interaction of Ignicoccus hospitalis and Nanoarchaeum equitans were investigated using two different electron microscopy approaches, by three-dimensional reconstructions from serial sections, and by electron cryotomography. Serial sections were assembled into 3D reconstructions, for visualizing the unusual complexity of I. hospitalis, its huge periplasmic space, the vesiculating cytoplasmic membrane, and the outer membrane. The cytoplasm contains fibres which are reminiscent to a cytoskeleton. Cell division in I. hospitalis is complex, and different to that in Euryarchaeota or Bacteria. An irregular invagination of the cytoplasmic membrane is followed by separation of the two cytoplasms. Simultaneous constriction of cytoplasmic plus outer membrane is not observed. Cells of N. equitans show a classical mode of cell division, by constriction in the mid-plane. Their cytoplasm exhibits two types of fibres, elongated and ring-shaped. Electron micrographs of contact sites between I. hospitalis and N. equitans exhibit two modes of interaction. One is indirect and mediated by thin fibres; in other cells the two cell surfaces are in direct contact. The two membranes of I. hospitalis cells are frequently seen in direct contact, possibly a prerequisite for transporting metabolites or substrates from the cytoplasm of one cell to the other. Rarely, a transport based on cargo vesicles is observed between I. hospitalis and N. equitans
- …