8 research outputs found

    Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis

    Get PDF
    Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras[superscript G12D]. Leukemia screens in wild-type mice, but not in mice expressing the mutant K-Ras[superscript G12D] that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-Ras[superscript G12D] promoted T-ALL through distinct mechanisms. In K-Ras[superscript G12D] T-ALLs, enhanced Ras activation had to be uncoupled from cell cycle arrest to promote cell proliferation. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor–activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo. The position of RasGRP1 downstream of cytokine receptors as well as the different clinical outcomes that we observed as a function of RasGRP1 abundance make RasGRP1 an attractive future stratification marker for T-ALL.National Institutes of Health (U.S.). Pioneer AwardNational Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.). (P01 AI091580

    Autoimmune Cytopenias in Pediatric Hematopoietic Cell Transplant Patients

    Get PDF
    Background: Autoimmune cytopenias (AICs) are potentially life-threatening complications following hematopoietic cell transplantation (HCT), yet little is understood about the mechanism by which they develop. We hypothesized that discordant B cell and T cell recovery is associated with AICs in transplant patients, and that this might differ based on transplant indication.Methods: In this case control study of children who underwent HCT at our institution, we evaluated the clinical and transplant characteristics of subjects who developed AICs compared to a control group matched by transplant indication and donor type. In cases, we analyzed the state of immune reconstitution, including B cell recovery, T cell recovery, and chimerism, immediately prior to AIC onset. Subjects were stratified by primary indication for transplant as malignancy (n = 7), primary immune deficiency (PID, n = 9) or other non-malignant disease (n = 4). We then described the treatment and outcomes for 20 subjects who developed AICs.Results: In our cohort, cases were older than controls, were more likely to receive a myeloablative conditioning regimen and had a significantly lower prevalence of chronic GVHD. There were distinct differences in the state of immune recovery based on transplant indication. None of the patients (0/7) transplanted for primary malignancy had T cell recovery at AIC onset compared to 71% (5/7) of patients with PID and 33% (1/3) of patients with non-malignant disease. The subset of patients with PID and non-malignant disease who achieved T cell reconstitution (6/6) prior to AIC onset, all demonstrated mixed or split chimerism. Subjects with AIHA or multi-lineage cytopenias had particularly refractory courses with poor treatment response to IVIG, steroids, and rituximab.Conclusions: These results highlight the heterogeneity of AICs in this population and suggest that multiple mechanisms may contribute to the development of post-transplant AICs. Patients with full donor chimerism may have early B cell recovery without proper T cell regulation, while patients with mixed or split donor chimerism may have residual host B or plasma cells making antibodies against donor blood cells. A prospective, multi-center trial is needed to develop personalized treatment approaches that target the immune dysregulation present and improve outcomes in patients with post-transplant AICs.</p
    corecore