150 research outputs found

    Channel estimation relying on the minimum bit-error-ratio criterion for BPSK and QPSK signals

    Get PDF
    The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance studied, when transmitting BPSK and QPSK signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions

    Quantum Annealing: An Overview

    Full text link
    In this review, after providing the basic physical concept behind quantum annealing (or adiabatic quantum computation), we present an overview of some recent theoretical as well as experimental developments pointing to the issues which are still debated. With a brief discussion on the fundamental ideas of continuous and discontinuous quantum phase transitions, we discuss the Kibble-Zurek scaling of defect generation following a ramping of a quantum many body system across a quantum critical point. In the process, we discuss associated models, both pure and disordered, and shed light on implementations and some recent applications of the quantum annealing protocols. Furthermore, we discuss the effect of environmental coupling on quantum annealing. Some possible ways to speed up the annealing protocol in closed systems are elaborated upon: We especially focus on the recipes to avoid discontinuous quantum phase transitions occurring in some models where energy gaps vanish exponentially with the system size.Comment: Final version; in pres

    Quenching Dynamics of a quantum XY spin-1/2 chain in presence of a transverse field

    Full text link
    We study the quantum dynamics of a one-dimensional spin-1/2 anisotropic XY model in a transverse field when the transverse field or the anisotropic interaction is quenched at a slow but uniform rate. The two quenching schemes are called transverse and anisotropic quenching respectively. Our emphasis in this paper is on the anisotropic quenching scheme and we compare the results with those of the other scheme. In the process of anisotropic quenching, the system crosses all the quantum critical lines of the phase diagram where the relaxation time diverges. The evolution is non-adiabatic in the time interval when the parameters are close to their critical values, and is adiabatic otherwise. The density of defects produced due to non-adiabatic transitions is calculated by mapping the many-particle system to an equivalent Landau-Zener problem and is generally found to vary as 1/Ï„1/\sqrt{\tau}, where Ï„\tau is the characteristic time scale of quenching, a scenario that supports the Kibble-Zurek mechanism. Interestingly, in the case of anisotropic quenching, there exists an additional non-adiabatic transition, in comparison to the transverse quenching case, with the corresponding probability peaking at an incommensurate value of the wave vector. In the special case in which the system passes through a multi-critical point, the defect density is found to vary as 1/Ï„1/61/\tau^{1/6}. The von Neumann entropy of the final state is shown to maximize at a quenching rate around which the ordering of the final state changes from antiferromagnetic to ferromagnetic.Comment: 8 pages, 6 figure

    Dynamics of linear polymers in random media

    Get PDF
    We study phenomenological scaling theories of the polymer dynamics in random media, employing the existing scaling theories of polymer chains and the percolation statistics. We investigate both the Rouse and the Zimm model for Brownian dynamics and estimate the diffusion constant of the center-of-mass of the chain in such disordered media. For internal dynamics of the chain, we estimate the dynamic exponents. We propose similar scaling theory for the reptation dynamics of the chain in the framework of Flory theory for the disordered medium. The modifications in the case of correlated disordered are also discussed.Comment: 4 pages, no figure

    Effect of long range connections on an infinite randomness fixed point associated with the quantum phase transitions in a transverse Ising model

    Full text link
    We study the effect of long-range connections on the infinite-randomness fixed point associated with the quantum phase transitions in a transverse Ising model (TIM). The TIM resides on a long-range connected lattice where any two sites at a distance r are connected with a non-random ferromagnetic bond with a probability that falls algebraically with the distance between the sites as 1/r^{d+\sigma}. The interplay of the fluctuations due to dilutions together with the quantum fluctuations due to the transverse field leads to an interesting critical behaviour. The exponents at the critical fixed point (which is an infinite randomness fixed point (IRFP)) are related to the classical "long-range" percolation exponents. The most interesting observation is that the gap exponent \psi is exactly obtained for all values of \sigma and d. Exponents depend on the range parameter \sigma and show a crossover to short-range values when \sigma >= 2 -\eta_{SR} where \eta_{SR} is the anomalous dimension for the conventional percolation problem. Long-range connections are also found to tune the strength of the Griffiths phase.Comment: 5 pages, 1 figure, To appear in Phys. Rev.

    Adiabatic multicritical quantum quenches: Continuously varying exponents depending on the direction of quenching

    Full text link
    We study adiabatic quantum quenches across a quantum multicritical point (MCP) using a quenching scheme that enables the system to hit the MCP along different paths. We show that the power-law scaling of the defect density with the rate of driving depends non-trivially on the path, i.e., the exponent varies continuously with the parameter α\alpha that defines the path, up to a critical value α=αc\alpha= \alpha_c; on the other hand for α≥αc\alpha \geq \alpha_c, the scaling exponent saturates to a constant value. We show that dynamically generated and {\it path(α\alpha)-dependent} effective critical exponents associated with the quasicritical points lying close to the MCP (on the ferromagnetic side), where the energy-gap is minimum, lead to this continuously varying exponent. The scaling relations are established using the integrable transverse XY spin chain and generalized to a MCP associated with a dd-dimensional quantum many-body systems (not reducible to two-level systems) using adiabatic perturbation theory. We also calculate the effective {\it path-dependent} dimensional shift d0(α)d_0(\alpha) (or the shift in center of the impulse region) that appears in the scaling relation for special paths lying entirely in the paramagnetic phase. Numerically obtained results are in good agreement with analytical predictions.Comment: 5 pages, 4 figure
    • …
    corecore