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Interference from other adjacent users in wireless applications is a major problem 

in direct-sequence code-division multiple-access (DS-CDMA). This is also known as the 

near-far problem where a strong signal from one user interferes with other users. The 

current approach to deal with the near-far problem in DS-CDMA systems is to use strict 

transmitter power control. An alternative approach is to use near-far resistant receivers. 

The practical near-far resistance receiver structure is the adaptive decorrelating detectors 

since it avoids complex matrix inversion. 

The existing CDMA standard known as IS-95 uses a long signature code 

sequence. However for simplicity, the adaptive multi-user receiver uses short signature 

code sequence. The problem is that adaptive receivers lose near-far resistance as the 

number of users increases in the system. This thesis describes a novel method of multi­

stage decision feedback cancellation (DFC) scheme immune from the near-far problem. 

The performance of the new DFC structure is constructed using three different adaptive 

algorithms: the least mean squared (LMS), the recursive least squared (RLS) and the 

linearly constraint constant modulus (LCCM) adaptive algorithms. It is found that LMS 

adaptive algorithm provides the best result considering its simple hardware complexity. 

It is also found that the LMS adaptive receiver along with the DFC structure provides a 
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better bit synchronization capability to the over all system. Since the receiver is near-far 

resistant, the LMS adaptive receiver along with the decision feedback cancellation 

structure also performs better in the presence of Rayleigh fading. 
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Interference Cancellation for Short Code DS-CDMA in the Presence of Channel 
Fading 

Chapter 1. Introduction 

In wireless communications, multiple signals are transmitted over the channel 

by modulating each message as shown in Figure 1.1. Methods for transmitting several 

users on the same channel are known as multiplexing. There exist three known methods: 

frequency division multiple access (FDMA), time division multiple access (TDMA) and 

Code division multiple access (CDMA). In FDMA, each user occupies a specific por­

tion of the allocated spectrum. In TDMA, each user transmits the signal at a known spe­

cific time. In CDMA, all users' messages are transmitted at all time and share the same 

spectrum, but are separated by a set of orthogonal codes. The main emphasis of this the­

sis is to examine interference of multi-user sharing the same spectrum in CDMA sys­

tem. 

Code Division Multiple Access (CDMA) uses code sequence with values +1 

or -1 (each +/-1 is known as a chip) to multiplex several users on the same channel. The 

chip rate is much higher than the digital data rate, as shown Figure 1.2. The chip 

sequence for each user is generated from a pseudo-random number (PN) generator (nor­

mally a set of shift registers) so that it bears random characteristics. Without the knowl­

edge of the chip sequence, the signal appears as a digital noise. The same principle of 

correlation is used in demodulating the signal to get the desired user's message. 
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Figure 1.1 The single channel communication 

CDMA has become a major contender for future cellular communications sys­

tems. Interim Standard IS-95 proposed by Qualcomm is the main standard for CDMA 

systems [56]. CDMA allows digital messages from separate users to be transmitted over 

the same frequency band by assigning to each user a unique chip sequence. For a 

receiver in the same frequency band, signals from other users appears as noise and 

therefore are rejected during demodulation. In IS-95, the standard defines signal modu­

lation specifications for both the down link (also known as the forward link), defined 

from the base station to the mobile station - and the reverse link or up-link, - defined 

from the mobile station to the base station. The modulator and demodulator for IS-95 

are thoroughly discussed in IS-95 [56]. 

The major obstacles with CDMA system are synchronization, the Near-Far 

problem and the interference cancellation. In IS-95, decoding the down link signal at the 

mobile station is a simpler task than decoding the uplink at the base station. This result 

is due to synchronization. Since the signals transmitted from the base station are in 

phase with each other, a simple correlator at the receiver will eliminate most interfer­

ence. This transmission from base station to the mobile unit user is known as DS­
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CDMA synchronous transmission. However, the signals received at the base station are 

not synchronized and are received with arbitrary phase shift (different time delays). This 

transmission from mobile unit to base station is known as DS-CDMA asynchronous 

transmission. Since the coded received signals are not synchronized, orthogonality of 

the signals from different users is no longer guaranteed, making decoding more difficult. 

The Near-Far problem is prominent only in the CDMA uplink, during trans­

mission from mobile units to the base-station. The Near-Far problem occurs when a 

transmitter near the base-station produces a very strong signal causing interference in 

weaker signals to be received by the same base station. As explained earlier, during 

uplink transmission, the chip sequences are non-orthogonal as they are received asyn­

chronously, which creates strong interference in conventional matched filter demodula­

tion. In IS-95 standard, long code sequences are used and hence it is not possible to 

cancel the multi-user access interference term using a matched filter. Therefore, con­

stant power control over all users are required. The power control enables all users' 

received power at the base station to be almost equal to reduce the near-far problem. 

Eni; r 1 
Chip SequenceSe uence I 

Decision
 

Data
 
Channel 

Data 
Interference 

I ITransmit Receiver 
L J Noise 

Figure 1.2 CDMA communications system at base band 
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Interference caused by other users with the desired signal due to non-orthogo­

nality of codes is the third challenge. This problem is only prominent in uplink, 

where detection is difficult due to unknown nature of the delay associated with received 

signals from all users. This delay destroys the orthogonal property of the codes used for 

different users. In matched filter detection, interference due to other users becomes 

prominent. In the presence of large users, this interference makes correct detection of 

the desired signal virtually impossible. 

Recently, work has been done to cancel the multiuser access interference term 

using short code (chip) sequences, thereby reducing the burden on power control. The 

classical paper by S. Verdu [8], followed by papers by R. Lupas [9][10][16], M.K. Vara­

nasi, B. Azang [13][26][27] discuss this approach. The most recent work emphasizes on 

use of adaptive system to avoid use of matrix inversion simplifying the receiver. It has 

been noticed that if there are large number of users, the adaptive decorrelating detectors 

lose the near-far resistance, thus requiring stringent power control. This thesis proposes 

a new receiver that increases the near-far resistance of the adaptive decorrelating detec­

tor during the uplink to the base station. In addition to that, this thesis explores complex­

ity and accuracy of three different, standard adaptive implementation, least mean square 

(LMS), recursive least square (RLS) and linearly constrained constant modulus 

(LCCM) adaptive algorithms to enhance the performance of the demodulator, as well 

as, synchronization of new users. 

The thesis is organized as follows: Chapter 2 introduces the multiple access systems in 

wireless communication and the Code Division Multiple Access systems in detail. It 
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also discusses several proposed methods for optimum and sub-optimum multi-user 

decoding of signals at the base station for CDMA with short code sequence. Chapter 3 

discusses several adaptive methods used in the literature and a comparison among them 

is made. In Chapter 4, the proposed adaptive decorrelating method along with the deci­

sion feedback cancellation structure is explained in detail. The the bit error rate of the 

new demodulator is theoretically calculated and it is shown that this enhances the near-

far resistance capability of the receiver. Chapter 5 introduces several methods of syn­

chronization for short chip sequence as it is used for adaptive decorrelating detector. It 

also discusses the influence on bit error rate due to the presence of new users during 

synchronization. The implementation of the simulations and the simulation results are 

discussed in Chapter 6, and Chapter 7 summarizes the work done and proposes future 

areas for research. 
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Chapter 2. Overview of Multiple Access Systems and DS-CDMA Multiuser 
Detector 

In wireless communication systems, multiple access schemes are used to 

allow many mobile users to simultaneously share a finite amount of radio spectrum. The 

sharing of spectrum is required to achieve high capacity along with high quality of com­

munications. 

The three major access techniques used to share the available bandwidth in a 

wireless communication systems are frequency division multiple access (FDMA), time 

division multiple access (TDMA) and code division multiple access (CDMA). These 

techniques can be grouped into narrow and wideband systems, depending on the avail­

able bandwidth allocated to each user. 

In conventional telephone systems, it is possible to talk and listen at the same 

time and this is known as duplexing. This feature is also required in wireless telephone 

system. Duplexing may be done using frequency or time domain techniques. Frequency 

division duplexing (FDD) provides two distinct bands of frequency for each user. A 

device called duplexer is used inside each mobile unit and base station to allow simulta­

neous radio transmission and reception on the duplex channel pair. Time division 

duplexing (TDD) uses time instead of frequency to provide forward and reverse link as 

shown in Figure 2.1. Thus TDD allows communication on a single channel and simpli­

fies the subscriber equipment since a duplexer is not required. 



7 

Reverse 
Channel Nrwannarei 

low 

fig Frequency split -.4 Frequency 

(a) 

Reverse 
Channel panne 

1441 Time split --01 Time 

(b) 

Figure 2.1 (a) FDD provides two simplex channels at the same time 
(b) TDD provides two simplex time slots on the same frequency 

The multiple access methods are described next. 

2.1 Frequency Division Multiple Access (FDMA) 

Frequency division multiple access (FDMA) assigns individual channels to 

each user. These channels are assigned on demand to the users and during the given call, 

no one else can use it. In FDMA-FDD system a pair of channels are assigned to each 

user, one channel to transmit and other channel to receive. The main features of FDMA 

are listed below. 

In FDMA, the bit rate is low and its period time is large. Here the channel delay 

has little effect on intersymbol interference (ISI). Hence, equalization is not used, 

in general, as intersymbol interference is relatively insignificant. 

FDMA is a continuous transmission scheme and it does not have overhead like 

synchronization. 

FDMA systems have higher cell site system cost, because of the single channel 
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Figure 2.2 In FDMA different channels are assigned in different 
frequency bands 

per carrier design and the need to use costly bandpass filter. 

FDMA uses a duplexer as it operates in FDD mode. 

Figure 2.2 explains the basic principle of FDMA. In the late 1970s, Bell Labo­

ratories developed the first US cellular telephone system call the Advanced Mobile 

Phone Services (AMPS). Similarly, the European Total Access Communication System 

(ETACS) was developed in mid 1980s and was virtually identical to AMPS. The salient 

features of AMPS and ETACS are given in Table 2.1 [1]. 

Table 2.1 AMPS and ETACS Radio Specifications 

Parameter AMPS Spec. ETACS Spec. 

Multiple Access FDMA FDMA 

Duplexing FDD FDD 

Channel Bandwidth 30 kHz 25 kHz 

Traffic Channel per RF 1 1 

Channel 
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Table 2.1 AMPS and ETACS Radio Specifications 

Parameter AMPS Spec. ETACS Spec. 

Reverse Channel Freq. 824-849 MHz 890-915 MHz 

Forward Channel Freq. 869-894 MHz 935-960 MHz 

Voice Modulation FM FM 

Peak Deviation: 
Voice Channel +/- 12 kHz +/- 10 kHz 

Control/Wideband Data +/- 8 kHz +/- 6.4 kHz 

Channel Coding for BCH(40,28) on FC BCH(40,28) on FC 
Data Transmission BCH(48,36) on RC BCH(48,36) on RC 

Data Rate on Control/ 10 kbps 8 kbps 
Wideband Channel 

Spectral Efficiency 0.33 bps/Hz 0.33 bps/Hz 

Number of Channels 832 1000 

2.2 Time Division Multiple Access (TDMA) 

Time division multiple access (TDMA) systems divide the transmission time 

into time slots as shown in Figure 2.3. In each slot only one user is allowed to either 

transmit or receive. Each user occupies a cyclically repeating time slot in a frame where 

the time slots for the number of total users (=N) comprise a frame. As the speaker is 

speaking continuously, transmitted data is stored in a buffer. During the time slot speci­

fied for given user the buffered data is transmitted in a burst mode. Thus in TDMA sys­

tems, transmission for any user is noncontinuous, implying, that TDMA can only be 

used in digital modulation. TDMA systems can use FDD or TDD modes of transmis­

sion. Each frame is made up of preamble, information message and trail bits. The pre­

amble contains the address and synchronization information that both the base station 
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Figure 2.3 In TDMA scheme, each channel occupies a cyclically 
repeating time slot 

and the subscribers use to identify each other. Guard times are utilized to allow synchro­

nization of the receivers between different slots and frames. Different TDMA standards 

share the common features described briefly below [1]: 

In TDMA, a user shares a single carrier frequency with several users while using 

nonoverlapping time slots. The number of time slots depends upon modulation 

technique, available bandwidth etc. 

Data transmission in TDMA is noncontinuous. Hence the subscriber transmitter 

can be turned off when not in use, thus saving battery power. 

Adaptive equalization of channel is required as inter symbol interference is a 

major distortion. 

Due to buffer and burst mode of transmission, in each time slot, synchronization 

for each user is required. Also guard time is required to separate two successive 

time slots. Hence the synchronization and guard time are overhead in TDMA 

systems. 
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Because of discontinuous transmission, the handoff process for a subscriber is 

simpler than FDMA. Handoff is the process of changing transmission from one 

base station to another base station, as the subscriber moves from one cell to 

another cell. 

The first generation of analog AMPS system was not designed to support the 

current demand for capacity in large metropolitan areas. Cellular systems using digital 

modulation techniques offer large improvements in capacity and system performances. 

Global System for Mobile (GSM) - developed in Europe is a second generation cellu­

lar system standard; it is the world's first TDMA cellular system to specify digital mod­

ulation, network level architecture and services. In the USA, after extensive research 

and comparison by major cellular manufacturers in the late 1980s, the United States 

Digital Cellular (USDC) System was developed using TDMA to support more users 

while sharing the same frequencies, reuse plan available by AMPS. For a smooth transi­

tion from AMPS to USDC, the interim standard IS-54 system was specified to operate 

using both AMPS and USDC standards (in dual mode) which makes roaming between 

the systems possible with a single phone. Table 2.2 summarizes the above mentioned 

two systems GSM and USDC (IS-54) [1]. 

Table 2.2 Second Generation Digital Cellular Standards Summary 

GSM IS-54 

Year of Introduction 1990 1991 

Frequencies 890-915 MHz (R) 824-849 MHz (R) 
935-960 MHz (F) 869-894 (F) 

Multiple Access TDMAIFDMA/FDD TDMA/FDMA/FDD 
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Table 2.2 Second Generation Digital Cellular Standards Summary 

GSM IS-54 

Modulation GMSK(BT=0.3) 71/4 DQPSK
 

Carrier Separation 200 kHz 30 kHz
 

Channel Data Rate 270.833 kbps 48.6 kbps
 

Number of Voice 1000 2500
 
Channels
 

Spectrum Efficiency 1.35 bps/Hz 1.62 bps/Hz
 

Speech Coding RELP-LTP @ 13 kbps VSELP @ 7.95 kbps
 

Channel Coding CRC with r=1/2; L=5 7 bit CRC with r=1/2;
 
Cony. L=6 Cony.
 

Equalizers Adaptive Adaptive
 

Portable Tx. Power 1 W/ 125 mW 600 mW/200 mW
 
Max./Avg.
 

2.3 Spread Spectrum Multiple Access (SSMA) 

Spread spectrum multiple access (SSMA) uses signals which have a transmis­

sion bandwidth that is several orders higher in magnitude than the minimum required 

RF bandwidth. A pseudo random noise (PRN) sequence is used to convert a narrowband 

signal to a wideband noise like signal before transmission. SSMA provides immunity to 

wireless channel rapid change also known as Rayleigh fading because of its wideband 

nature. Since many users can share the same bandwidth, SSMA systems are bandwidth 

efficient in a multiuser environment. 
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There are two main types of SSMA techniques: frequency hopped multiple 

access (FHMA) and direct sequence code division multiple access (DS-CDMA). They 

are described in the following section. 

2.3.1 Frequency Hopped Multiple Access (FHMA) 

Frequency hopped multiple access (FHMA) system is a digital multiple access 

system where the carrier frequency of the user is varied in a pseudo random fashion 

within a wideband channel [1]. In other words, the digital data is broken down into uni­

form sized bursts which are transmitted on different pseudorandomly chosen carrier fre­

quencies. The instantaneous bandwidth of any transmission burst is much smaller than 

the total spread bandwidth. If the rate of change of the carrier frequency is greater than 

the symbol rate then that system is referred as fast frequency hopping system. If the 

channel changes at a rate less than or equal to the symbol rate, then the system is said to 

use slow frequency hopping. In the FHMA receiver, a locally generated PRN code is 

used to synchronize the receiver's instantaneous frequency to that of the transmitter. 

FHMA system may use narrowband FM or FSK modulation for transmission. 

A frequency hopped system provides security because of the use of PRN 

sequence of frequency slots. In addition, FHMA is somewhat immune to fading when 

used with error control coding and interleaving as compared to DS-CDMA [1]. Error 

control coding is also useful to recover data when two or more users transmit on the 

same channel at the same time. 
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2.3.2 Direct Sequence Code Division Multiple Access (DS -CDMA) 

In direct sequence code division multiple access (DS-CDMA) systems, the 

narrowband message signal is coded by a very large bandwidth spreading signal. The 

spreading signal is basically a pseudorandom code sequence that has a chip rate much 

greater than the data rate of the message. All users in DS-CDMA transmit data at the 

same time on the same spectrum as shown in Figure 2.1. Each user has its own spread­

ing code and the codes are approximately orthogonal to other. The receiver, having 

knowledge of the transmitted code sequence, performs a time correlation operation 

between the received signal and the code to detect the transmitted data. Since the codes 

are orthogonal, all other users' transmitted data appear as noise due to decorrelation. 

Data 
Modulator 

Oscillator 
Frequency 
Synthesizer 

Frequency 
HoppingHopping 
Signal 

(a) Transmitter Code 
Clock PN Generator 

Wideband Signa Bandpass ....Demodulate Data outFilter 
Frequency
Synthesizer Synchronization 

SystemA 
PN Generator 

(b) Receiver 

Figure 2.1 Block diagram of FH-CDMA system, a) transmitter and b) 
receiver 
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In DS-CDMA, the power of other existing users at a receiver determines the 

noise floor after decorrelation with the desired signal. In general, stronger received signal 

levels raise the noise floor at the base station, thus decreasing the probability that the 

weaker signals will be decoded correctly. This is known as near-far problem. To circum­

vent this problem, strict power control is used in the existing CDMA system (IS-95) 

[56]. Power control is asserted periodically by each base station in a cellular system and 

it assures that each mobile user within the base station coverage area provides approxi­

mately the same signal level to the base station receiver. The details of the near-far prob­

lem and the design of demodulators to alleviate the need for power control will be 

discussed in section 2.4 and 2.5. The features of the existing CDMA systems (based on 

the standard IS-95) include the following [2]: 

CDMA has a soft capacity limit. As the number of users in a CDMA system is 

increased, the noise floor is also increased in a linear manner with the increase in 

bit error rate. 

Figure 2.1 In CDMA, each channel is assigned a unique PRN code 
which is orthogonal to PRN codes used by other users 
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The possible channel bandwidth in CDMA is greater than coherence bandwidth 

of the channel. Hence, the effect of multipath fading on the received signal will 

be less. 

Since the chip duration is very small, time delayed multipath components can 

be distinguished using the well known receiver known as RAKE receiver to 

reduce the bit error rate of the demodulator [1]. 

Since CDMA uses the same spectrum in co-channel cells, soft handoff is 

possible in contrast to FDMA and TDMA. In the soft handoff process the mobile 

user moves from one cell to other without changing the carrier frequency or the 

spreading code. 

A U.S. digital cellular system based on CDMA has been standardized as 

Interim Standard 95 (IS 95) by the U.S. Telecommunications Industry Association 

(TIA). Like IS-54, the IS-95 system is designed to be compatible with the existing U.S. 

analog cellular system (AMPS) frequency band for dual mode operation. In IS-95, user 

data changes in real time, depending on the voice activity and requirement in the sys­

tem. The detail of IS-95 can be found in [56]. 

There are some inherent advantages and disadvantages of using CDMA over 

FDMA and TDMA [2] as discussed in the following section. 

2.3.3 Advantages and disadvantages of CDMA 

The spread spectrum technique has been long established for antijam and mul­

tipath rejection capability. Now in the form of direct sequence code division multiple 
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access (DS-CDMA), it has been proposed to support simultaneous digital communica­

tion among a large community of relatively uncoordinated users. It has been recognized 

that DS-CDMA capacity is only interference limited unlike FDMA and TDMA, where 

capacities are primarily limited by bandwidth. CDMA takes advantage of the fact that 

voice signals are intermittent with a duty factor of 3/8. Hence CDMA capacity can be 

increased by 8/3 (or about 2) by suppressing transmission during the quiet period of 

each speaker [5]. 

Typically in terrestrial digital cellular systems, isolation among the cells is 

provided by path loss, which increases with the fourth power of distance [1]. Conse­

quently, conventional techniques must provide different frequency allocation for contig­

uous cells (only reusing the same channel in one of every 7 cells in AMPS). However 

CDMA can reuse the spectrum for all cells, thus increasing capacity by a large percent­

age of normal frequency reuse factor. The capacity of the CDMA system can further be 

improved by using the common technique of sectorization and directional antennas per 

cell site both for receiving and transmitting [5]. 

It is well recognized that the time and frequency dependent fading effect of a 

channel degrades the signal. Since CDMA is a wideband system, its multipath fading is 

less severe [2]. It has also been mentioned that problems of intersymbol interference 

(ISI) and co-channel interference are less severe in CDMA than in TDMA. 

The most important problem of CDMA is the near-far issue. In the conven­

tional CDMA receiver, the desired user's signal is detected by correlating it with its 

spreading code. In this situation, other users' transmitted signals will form a interfering 
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noise to the desired signal [6]. If some of the received signals are too strong compared to 

the weaker signals, the weak signals will have a very strong interfering component with 

high bit error rate. In the near-far problem, strong signal near the base station will block 

detection of far away weaker signals. IS-95 uses a power control method where the base 

station controls the transmit power of the mobile users to normalize the received signal 

strength. This puts a heavy burden on the power control to stop near-far problem from 

occurring. 

In practical DS-CDMA applications, the channel is synchronous for commu­

nication from the base station to the mobile users (forward link). Here in the received 

signal, the bits of all users are aligned in time as the signals are transmitted from base 

station together. However, the channel will be asynchronous (i.e. bit signals are ran­

domly delayed from one another) for the receiver at base station when the communica­

tion is from the mobile users to the base station (reverse link), because they are 

transmitted separately. 

Antenna 

Base Station 

Figure 2.1 Near-far problem at the base station. 
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The near-far problem is a component of multiple access interference (MM). 

MAI refers to the interference between DS-CDMA users at the receiver. This interfer­

ence is the result of the asynchronous signal reception at the base station causing ran­

dom time offsets between signals. This makes it impossible to design spreading codes 

which are perfectly orthogonal. A better detection strategy is multi-user detection, 

where, information about multiple users are used jointly to detect each individual user at 

the base station. The utilization of multi-user detection algorithms has the potential to 

solve not only the near far problem but also to provide additional benefits for DS­

CDMA systems. The following sections contain a description of a transceivers structure 

of DS-CDMA including conventional detection and a literature survey that covers the 

existing multi-user detection methodologies. 

2.4 Transceivers structure for DS-CDMA 

In the direct sequence code-division multiple-access (DS-CDMA), all users in a 

communication channel uses different spreading codes while transmitting their 

individual signal. Now depending on whether mobile subscribers are transmitting or the 

base station is transmitting, two different transceivers structures can be formed. When 

the base station is transmitting to the mobile users, the signals for all the users are 

transmitted in phase and this is called synchronous transmission. As the spreading codes 

are designed to be almost orthogonal, simple conventional detector, discussed later, can 

be used for signal detection in the mobile hand-set. During transmission from the mobile 

subscribers to the base station, individual signal of a subscriber cannot be maintained in 

phase with that of other users. This results into the asynchronous transmission where the 
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received signals of all the users in the communication channel are shifted from each other 

by unknown delays. At this situation the signals from each individual subscribers are not 

orthogonal to each other hence calls for a better method of detection, normally known as 

multi-user detection. In this thesis, the problem of better multi-user detection is 

considered. Figure 2.2 shows a transceivers structure where the mobiles are transmitting 

to the base station. In the following section, the conventional detector is discussed. This 

is the simplest of all receiver structures for DS-CDMA. This can be used as a single user 

receiver structure. All other structures which try to cancel the multiple access 

interference terms, generally work in multi-user mode. These are called multi-user 

detectors as they need information of all the users regarding their spreading codes and 

time delays to operate successfully. 

Conventional Detection : In this section, a detailed mathematical description of 

a conventional detector is given. This discussion also clarifies the effect of multiple 

access interference [7][8]. For simplicity, a synchronous DS-CDMA channel is 
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Figure 2.2 Transceivers structure for DS-CDMA system. 
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considered. To simplify the discussion, it is assumed that 1) all carrier phases are equal 

to zero, 2) each transmitted signal arrives at the receiver over a single path and 3) the data 

modulation is Binary Phase Shift Keying (BPSK). Figure 2.2 shows the synchronous 

transmission where the time delays (r1 to Tic) introduced by the channel are considered 

as zero. Assuming there are K users in a synchronous single path BPSK real channel, the 

baseband received signal can be expressed as: 

K
 
r(t) = a k(t)b k(t)(s k(t)) + cru(t) 

k = 1 

where, bk(t) is the binary transmitted data bit of the kth user, ak(t) is the received 

strength of the signal, sk(t) is the kth user spreading code and u(t) represents additive 

white gaussian noise (AWGN) with a as the variance. The received power of the kth sig­

nal is assumed to be constant over a bit interval. The modulation consists of rectangular 

pulses of duration Tb (bit interval), which takes on bk = +/-1 values corresponding to the 

transmitted data. The signature code consists of rectangular pulses of duration Tc (chip 

interval), which takes on + / -1 values corresponding to some binary pseudo random code 

sequence. The chip rate is much higher than the bit rate, i.e. Ic << Tb. Multiplying the 

BPSK signal during transmission results in spreading the narrowband data signal to a 

wideband signal by a factor Tb/Tc (spreading factor). This factor is also called process­

ing gain. 

The conventional detector for the received signal is a bank of K correlators, as 

shown in Figure 2.3. First, the signature codes are used to decorrelate the received sig­
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Decision 
t= Tb Y1 b1 

Decision 
t= i Tb YK bK 

SK 

Matched filter bank 

Figure 2.3 The conventional DS-CDMA detector: a bank of correla­
tors with matched filters. 

nal using matched filter consists of integrator for a bit period. The outputs of the correla­

tors are sampled at the bit times yielding an estimates of the transmitted data bit along 

with its amplitude. This is known as soft estimate. The signs of the soft estimates form 

the hard decisions (+/-1). Hence, the conventional detector follows a single user detec­

tion strategy. The success of this method depends of the orthogonality of the signature 

codes. 

Let the correlation value be defined as 

pi, = f si(t)sk(t)dt (4) 
bTb 

Here, pk,k=1, otherwise pi,k e [0,1). The output of the matched filter for kth user over a 

particular bit interval is 
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y = 5 r(t)s k(t)dt (5) 
bTb 

K 
y = a kb k+ pi, kaibi+ J csu(t)sk(t)dt (6) 

bT 
b 

The desired signal is akbk. The interference from the other users MAIk is 

E pi kaibi and the resultant noise is 7.- 5 au(t)sk(t)dt =zk. Decoding the received 
i= bT 

b 

signal, with kth user signature code gives the recovered data, multiple access interference 

(MM) term and the noise term zk. The existence of MAI has a significant impact on the 

capacity and performance of the conventional direct sequence system. MAI power 

increases linearly with the increase in number of users and it depends on the amplitude 

of the received signals of other users. Hence, an interferer with a higher amplitude will 

make detection of a weaker signal harder, thus creating the near-far problem. This 

problem can also arise due to fading. During fading individual signal in asynchronous 

DS-CDMA will fluctuate constantly depending on the mobile velocity and reflected 

paths. It will be possible that when most of the received signals are strong, few others are 

weak due to fading, creating near-far problem. The objective of this thesis is to develop 

a near-far resistant multi-user receiver for asynchronous DS-CDMA communication 

systems which is immune to the multiple access interference. 

Research efforts directed at mitigating the effect of MAI on conventional 

detectors have focused on the multiuser detection. In the following section different 

multi-user detectors will be discussed, each of which fall into one of three categories. 
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Non-recursive detectors: These are mainly the linear detectors. Here a linear 

mapping is applied to the outputs of the conventional detectors (matched filter outputs) 

to cancel the MAI term present [10] 415]. These can be divided into three broad 

categories: the decorrelating detector, the minimum mean squared error (MMSE) 

detector and decision feedback detector. In the above mentioned detectors, the 

correlation matrix is formed using the matched filter output. In the decorrelating detector, 

the inverse of the correlation matrix is used to cancel MAI terms in the matched filter 

output and to get estimate of the amplitudes and bits for all users. In the MMSE detector, 

noise power and received amplitudes of all users are considered along with the 

correlation matrix for inversion to multiply to the matched filter output. In Both the 

methods, noise gets enhanced. In the decision feedback detector, the correlation matrix 

is broken down into lower triangular matrix using Cholesky decomposition algorithm 

[53]. This is multiplied to the matched filter output and in this case noise does not get 

enhanced. Following this, successive interference cancellation is done. In the following 

section on multi-user detection, the above mentioned methods will be discussed in detail. 

Recursive detectors: These are the adaptive implementation of the linear 

detectors. This circumvents the use of matrix inversion present in linear detectors and 

works under minimum mean squared error criteria. This includes adaptation with and 

without (blind adaptation) training sequence [30]-[35]. In Chapter 3, different adaptive 

algorithms are considered which are the least mean square (LMS), the recursive least 

square (RLS) and the linearly constraint constant modulus (LCCM) adaptive algorithms. 

Subtractive interference cancellation: Here the amplitude and bit estimates of 

the stronger users are used to regenerate the signals for those users and subtracted out of 

the received signal leaving the weaker signal with less interference. This can be further 

divided into successive interference cancellation (SIC) and parallel interference 

cancellation (PIC) [17]-[19]. Successive Interference Cancellation scheme requires 
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amplitude estimation for all the users and using that information to take decision about 

the strongest user. Following that it regenerate the signal for the strongest user and cancel 

it from the received signal producing the input for the next stage. This repeats to take the 

decisions for all the users. In case of parallel interference cancellation, several stages are 

used for the correct estimation of bit. In each stage, the bits are estimated using matched 

filter and following that using amplitude estimates the signals are regenerated. The 

regenerated signals are used to form the interference term for each user and subtracted 

from the received signal to create clean signals with less MAI for the next stage. These 

clean signals are used to estimate bits in the next stage of PIC. 

In the following section on multi-user detection, all the methods are discussed in 

detail. 

2.5 Multi-User Detection 

Recently there has been a great interest in improving DS-CDMA detection 

through the use of multi-user detectors. In multi-user detection, code and timing infor­

mation of multiple users are jointly used to detect an individual user. 

Verdu's work [8], proposed and analyzed the optimal multiuser detector. This 

detector is known as the maximum-likelihood sequence (MLS) detector as it is devel­

oped on Maximum Likelihood criteria. The problem with the MLS approach is that there 

are 2K possible choices of bit in synchronous transmission and 2NK possible choices in 

asynchronous transmission where K stands for number of users and N is the message 

length. However, the MLS detection can be implemented for DS-CDMA by following 

the correlator bank with a Viterbi algorithm. Unfortunately, the required Viterbi algo­

rithm also has a complexity that is exponential in the number of users, i.e., 2K for asyn­
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chronous case. Another disadvantage of MLS detector is that it requires knowledge of 

the received amplitudes ak and the time delays (Tk) which must be estimated [8]. 

For multi-user detection, it will be convenient to introduce the matrix-vector 

notation of the system model to describe the output of the conventional detector. In a 

synchronous channel, the received signals are aligned in time. Here, the detection can 

focus on one bit interval independent of other transmitted bit neglecting the multi-path 

fading. For three users as shown in Figure 2.4, output of the conventional detector for 

one bit can be given as: 

Yi = r *s1= a1b1+ P2,1a2b2+ P3,1a3b3 +z1 (7) 

(8)Y2 = r*s2=P 1,2 ai b 1+ a2b2+ P3,2a3b3 +z2
 

y3 =r*s3= P1,3 a1b1+ P2,3 a2b2+ a3b3 +z3 (9)
 

This can be written in matrix form as 

r 
!Channel I

Noise
 
aibi (n) I au(t)
 

a3b3(n)1 

L ­
Channel
 

Matched filter bank
 

Figure 2.4 Matched filter output for 3 users synchronous DS-CDMA. 
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a1 0 0 b zy1 1 P2, 1 P3, 1 1 1 

0 a2 0 b + z2 (10)Y2 Pl, 2 1 P3, 2 2 

Y3 0 0 a b z3P1, 3 P2, 3 1 3 3 

or, 

y=RAb+z (11) 

For a K-user synchronous system, y, b and z will be vectors of dimension K 

with correlator output, transmitted data bits and noise term. R and A will be matrices 

with dimension of K x K with correlation and amplitude information. Since, pk,i = 

the matrix R is symmetric. It is possible to break R into two matrices: one presenting the 

autocorrelation (I) and the second for crosscorrelation (Q) where Q contains off-diago­

nal terms only. Then the conventional matched filter output (10) can be written as: 

y=Ab+QAb+z (12) 

where, the second term QAb represents the MAI present in the conventional detector 

output. It will shown later that in multi-user case, this allows perfect MAI cancellation. 

The problem of detection in asynchronous channel is more complex than in a 

synchronous channel. The transmission from mobile subscribers to the base station is 

asynchronous since each signal is received by the base station at different time due to the 

different delay paths associated with each user. 

The continuous time model of a received signal for synchronous transmission 

can be modified for single path asynchronous channel as: 

N K 
r(t) = E E a k(t)b k(t + nT k)s k(t k) + c u(t) (13) 

n = N k = 1 
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where tic is the delay of the kth user. The matrix model of asynchronous transmission 

similar to Eq. 11 should encompass the entire message. 

For an example, a multiuser system is considered where only three users are 

present and each of them is transmitting three bits as shown in Figure 2.5. Here each 

user bit is delayed by a fraction of a bit period "Lk from other. The output of the conven­

tional detector can be formed using Eq. 11 where it will be considered as nine users 

transmitting one bit over a time period of (3T + T3 - T1). Then the correlation matrix R 

can be written as: 

0 0 0 0 0 0 
1 P2, 1 P3, 1 

0 0 0 0P1,2 1 P3, 2 P4 2 0 

0 0 0 0131,3 P2,3 P4, 3P5 31 

0	 0 0 0P2,4 P3,4 P5,4 P6,41 

R =	 0 0 p3,5 p4,5 1 p6,5 p7,5 0 0 (14) 

0 0 1 p7, p8, 00 P4, 6 P5, 6 

0 0 0 0 0 0
5, 7 6, 7 1 P8 7 P9, 7 

0 0 0 0 
0 P6, 8 P7, 8 1 P9 8 

0 0 0 0 0 0 p7, p8, 1 

where pi,k is the partial crosscorrelation between ith and kth bits. For K users in asyn­

chronous transmission and each users transmitting N bits, the matrix R will have a 

dimension of NK x NK. 

Most of the proposed multi-user detectors can be classified roughly as non-

recursive, recursive and subtractive interference cancellation detectors as mentioned 

earlier. In the following sections they will be discussed in detail. 
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2.5.1 Non-Recursive Detectors 

The optimum detector reviewed in the beginning of section 2.5 provides 

important performance gains over the conventional single-user detector, including the 

solution of the near-far problem. The price is an increase in implementation costs, in 

particular, the exponential complexity of the decision algorithm in the number of users 

and the need to acquire the actual values of the received signal amplitudes. 

The next important group of multi-user detectors are linear multi-user detectors [10]­

[15]. These detectors apply a linear mapping, L to the output of the conventional detec­

tor to reduce the MM seen by each user. These are also known as decorrelating detector, 

since these detectors decorrelates the interference terms from the matched filter output 

leaving only the desired user's component. The decorrelating detector was initially pro­

posed by Schneider [13] and then was extensively studied by Lupas and Verdu [10]. The 

decorrelating detector for synchronous channel was extended for asynchronous channel 

[11]. At first the situation will be examined when the demodulator is constrained to 

ignore the received amplitudes of the active users. 
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Figure 2.5 Sample timing diagram for an asynchronous channel.
 
There are 3 users and 3 bits per users
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2.5.2 Decorrelating Detectors 

Synchronous channel: The most likely bits and amplitudes are those that best 

explain the received waveform in a mean-square sense, that is, the error E2(t) will be 

2 

min a
kE 

10, 00) min bE (-1,1)K - a kb ksk(t)1 dt (15) 
0 k = 1 

If y denotes the matched filter outputs, then the product term inside the inte­

gral can be written in matrix form as: 

r2(t) 2c
t
y + ct Rc (16) 

where ck=akbk, so ct =[c1 c2 cK] and R is the correlation matrix with elements, 

T 

pig = Jsi(t)si(t)dt (17) 
0 

Now minimization of Eq. 15 is equivalent to maximization of 

max...c RK[2c
t
y ct Rc] (18) 

with respect to c. If the matrix R is invertible, from the solution of Eq. 18 the best esti­

mate of c is c*, where 

c*=R-ly (19) 

and the most likely bits are given by, 

b = sgn (c*) =sgn (ley) (20) 
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and Ic*1 = a where at= [al a2 ....ak]. 

The decorrelating detector reforms the matched filter outputs to a linear trans­

form prior to threshold comparison and completely eliminates MM. This method has the 

following attractive properties. The decorrelating detector provides substantial perfor­

mance and capacity gain over conventional detector. This method reforms the maximum 

likelihood sequence detector when the amplitudes of all users are not known. Thus, it 

does not need the estimate of the received amplitudes. The most attractive property is 

that the decorrelating detector has computation complexity linear with the number of 

users. For synchronous transmission, this can decorrelate one bit at a time. 

A disadvantage of the decorrelating detector is that it increases noise floor by 

lz. Furthermore, to implement this detector, all the active users' spreading codes, their 

bit timings are needed and it requires inversion of the matrix R which for synchronous 

transmission is of dimension K x K where K is the number of users and for asynchro­

nous transmission, is of dimension NK x NK, where N is the message length. For the 

asynchronous case, inverting the correlation matrix R is more difficult. There are subop­

timal approaches to implement the decorrelating detector by breaking up the detection 

problem into more manageable blocks, even to one bit transmission interval [11][16]. 

2.5.3 Minimum Mean Square Error (MMSE) Detector 

The minimum mean-squared error (MMSE) detector is also a linear detector 

which trades off suppression of multiuser interference with noise reduction when the 

signal amplitudes are known by the receiver [14]. The problem of MMSE detection can 
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be set as follows: let the matched filter output y be given as y = RAb + Sn = Rd + Sn, 

where R is the correlation matrix, d =Ab, S = [s1 sk=[si,k swjt, n is a 

Gaussian random variable with variance a and L is the length of the chip sequence. Now 

the vector d is also considered as a random variable taking values between (oo, -.) . Now 

the best estimate of d can be given by, a = E(dyt)[E(yyt)] y [58]. Let a = Ly,, then L 

is known as the linear transformation required to get the best estimate of d. 

E (ddt) Rt= A2RtNow E(dyt) = E ( ddtRt + b ntSt) 

Also, E (yyt) = E((Rd+Sn)(dtRt +ntSt)) = R E(ddt) Rt + S E(nnt) St 

= R A2 Rt + a2 Rt 

A2 Rt /(R A2 Rt a2 Rt) [ R cy2A-2]iSo, L (21) 

Because it takes into account the background noise, the MMSE detector generally pro­

vides better probability of error performance than the decorrelating detector. As the 

background noise goes to zero, the performance of the MMSE detector converges to the 

decorrelating detector. The disadvantages of the MMSE detector are that it needs to 

invert the matrix R and also requires the amplitude estimate of the received signals [14]. 

2.5.4 Decision-Feedback (DF) Detector 

Duel-Hallen first reported the decision feedback (DF) detector (also known as 

zero-forcing decision feedback or decorrelating decision feedback) [24]. It performs two 

operations: first, linear preprocessing on the received signal which partially decorrelates 

the matched filter output without enhancing the noise. Second, an SIC operation, which 

takes decision and subtracts out the interference from one additional user at a time, in 

descending order of signal strength. Figure 2.1 explains the basic operation of decision 
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feedback detector for synchronous CDMA. 

In synchronous CDMA, a white noise model can be obtained by factoring the 

positive definite matrix of cross-correlations as R = Ft F, where, F is a lower triangular 

matrix using Cholesky decomposition algorithm. If the filter with response (Ft)-1 is 

applied to the sampled output of the matched filter, the resulting output vector is 

vd = FAb +n (22) 

where n is a white noise vector with the autocorrelation matrix R(n) =o2I (I is K x K 

identity matrix). The model in Eq. 22 gives rise to the decorrelating decision feedback 

detector. The kth component of id is given by 

k-1 
Yd k = Fkakbk + Fk,iaibi+nk (23) 

i =1 

Here it is assumed that the amplitudes of the users are in decreasing order, 

that is, Al >A2>....>AK. Since, the expression in Eq. 23 does not contain a MM term, 

a decision for this user is made first: b1 = sgn (51). The MAI term in Y2 is from b1. Since 

a decision for the first user is available, one can use feedback in estimating the second 

user's data bit. Similarly for kth user, the MM depends on all users' amplitudes stronger 

than itself. As decisions for these users have already been made, they can be used to 

form a feedback term (shown in Figure 2.1), 

k-1 
[,, (24)bk = sgn yi I Fiaibi 

i =1 i 
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t=T decision device 

SK 

Matched Filter Bank 

Figure 2.1 Matched filter receiver and decorrelating decision feed­
back detector for synchronous DS-CDMA 

Similar to the derivation for synchronous system, decision feedback detector 

for asynchronous system has also been proposed [23] [25]. Like the synchronous case, 

there is feedforward filter and unlike synchronous case there is a feedback filter too. 

Under the assumption that all past decisions are correct, the decision feedback 

detectors eliminate all MAI and maximizes the signal to noise ratio [23]. An important 

difficulty in DF detector is the need to compute Cholesky decomposition and the whit­

ening filter (Ft)-1 (matrix inversion). The DF detectors like the subtractive interference 

cancellation detectors, has the additional disadvantages of needing to estimate the 

received signal amplitudes. If the soft outputs of the decorrelating detector are used to 

estimate the amplitudes, the DF detector is equivalent to the decorrelating detector [23]. 

If the amplitude estimates are better, the DF detector has better performance than decor-

relating detector. However, if the estimates are less reliable, the DF detectors performs 

worse than the decorrelating detector [7]. 
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2.5.5 Recursive Detectors 

The development of multiuser detection is proceeding along a path which is 

typical of other areas in communications. Initially, optimum solutions were obtained 

along with the best possible performance achievable in Gaussian noise channel. Those 

results showed a huge gap between the optimum performance and the performance of 

the conventional single user detector. In particular, they showed that the near-far prob­

lem is not a flaw of CDMA but the inability of the conventional receiver to exploit the 

structure of the multiple access interference. 

The second stage in the development of multiuser detection was devoted to the 

analysis and design of detectors that could achieve significant performance gains over 

the conventional receiver without incurring the exponential complexity of optimum 

detector. This brought the nonrecursive detectors already discussed and subtractive 

interference cancellation detectors to be mentioned in the next section. Motivated by the 

channel environments encountered in many CDMA applications, the design of mul­

tiuser detectors also has started for channels with Rayleigh fading, frequency selective 

fading and multipath time dispersive fading. 

The foreground multiuser detectors depend on various parameters such as 

received amplitudes and cross-correlations which are not fixed and known beforehand. 

Therefore, the recent thrust in research in multi-user detection is the design of adaptive 

detectors which self-tune the detector parameters from the observation of the received 

waveform. 
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2.5.6 The adaptive linear MMSE detector 

The adaptive linear MMSE detector was first proposed in [30]. Further work has 

been done on it modifying main algorithm [31]-[33]. Significant speed up is also achieved 

using the recursive least square (RLS) algorithm [34][35]. The minimum mean-square 

error detector (MMSE) mentioned previously tries to find a linear transform L in Eq. 21 

to the matched filter outputs (y) by minimizing E[lb - LyI2]. The contribution of the kth 

user to the penalty function E[lb - LyI2] is equal to E[(bk - <ck,y>)2] where the linear 

transform is denoted by ck. The gradient of the cost function inside the expectation is 

equal to 2 (<ck,y> bk)y. Because of the convexity of the penalty function, the gradient 

descent adaptive algorithm is formed as: 

c k[n] = c k[n 1] i.t((c k[n 1], y[n]) bk)y[n] (25) 

This will converge with infinitesimally small step size p, to the argument that minimizes 

the penalty function. The following information is required for implementation of the 

above mentioned algorithm: 

The training sequence of the desired user must be known. 

The timing of the desired user must be acquired. 

The signature waveform of the desired user facilitates the initialization of the 

algorithm. 

It can be implemented in synchronous and asynchronous channel. 
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2.5.7 Blind adaptive multi-user Detection 

The requirement of training sequences in the multiuser detectors mentioned 

above is cumbersome in multiuser communications. Recently a blind adaptive multiuser 

detector is reported which requires considerably less information for operation 

[36][37][48], 

It requires the knowledge of the signature coefficient of the desired user. 

It requires the timing of the desired user. 

The blind multiuser detector adapts a linear transformation of the observations 

whose impulse response is ck for kth user and outputs the decision: 

k = sgn( (y, ck))
 (26)
 

ck can be written in canonical orthogonal decomposition: ck = sk + xk where <sk,xk>. 0. 

The energy of the output of the linear transformation <y, sk + xk> has three additive 

components: the first due to the desired user, the second due to the MM and the third 

due to the background noise. The first component is transparent to the choice of xk. 

Thus variation in xk can only change the energy of the second and third components. 

Accordingly, a very simple strategy is chosen for xk that minimizes the output energy: 

MOE(xk) = E[(<y, sk + xk>)2]. This can also be written as MOE(xk) = E[(Akbk- <y, sk + 

xk>)2] + Ak2. Thus the MOE solution for xk is also the solution for the MMSE linear 

detector. Therefore minimization of the MOE(xk) lends the blind adaptation rule which 

is guaranteed to converge globally [37], 



38 

xk[n] = xk[n 1] 12Z[n](y[n] ZmF[n]sk) (27) 

where ZmF[n].<y[n], sk> and Z[n]= <y[n], sk -t- xk[n-1]>. In the asynchronous case, it is 

possible to work with signals that span one bit, or, in order to improve performance we 

can lengthen the duration of the linear transformation. As usual, it is possible to improve 

convergence rate by the recursive least square adaptation method. 

2.5.8 Subtractive Interference Cancellation 

The third class of multi-user detectors can be grouped as subtractive interfer­

ence cancellation detectors. The basic principle of these detectors is to estimate the MAI 

contributed by each user and subtract the interference from the output received signal. 

Such detectors are used in multiple stages to improve the detection. Some of these 

detectors are also known as decision feedback detectors, as they are similar to feedback 

equalizers for inter-symbol interference (ISI) cancellation. 

The signal decision in this method can be 'hard' or 'soft'. The soft-decision 

approaches use the soft decisions, that is, the amplitudes of the detected signal to esti­

mate the amplitude and data bit. Thus these tends to be linear in contrast to the 'hard' 

decision based detectors. The hard decision based approach feeds back a bit decision 

and is nonlinear. 

In this section, an overview of two subtractive interference cancellation (suc­

cessive and parallel) detectors is given [17][18]. 
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2.5.9 Successive Interference Cancellation (SIC) 

The first SIC structure was reported in [19]-[21], where it was used as the 

demodulator stage in addition to the adaptive antennas. The SIC scheme is further inves­

tigated [22] for BPSK and M-ary orthogonal modulation. 

The successive interference cancellation detectors consists of K stages for K 

number of total users, taking a successive cancellation approach to cancel interference. 

The first stage of the cascaded multi-stages is shown in Figure 2.1. In the first stage of 

this detector the hard decision about the transmitted bit is made for the strongest user 

among all the users. The estimate of the amplitude of the same user is used to regenerate 

that signal and cancels out that user from the received signal. Thus the signal after 

stage-1 can be given by r1(t) = r(t-Tb) - al(t- Tb)blsl(t -Tb). So, the remaining users see 

less MAI in the next stage. Similarly in the second stage, the hard decision for the trans­

mitted bit of the next strongest user is made. Using its amplitude estimation, the signal 

of that user is generated and cancelled out from the output of the first stage. Thus the 

signal after stage-2 will be r2(t) = rl(t -Tb) a2(t- 2Tb)b2s2(t -2Tb). This continues for 

detecting all the users. Before SIC is used, all the users should be ranked according to 

their received amplitude strength. The operation of kth stage can be summarizedas : 

1)detect the strongest signal using a conventional detector and take a hard decision, 2) 

with the knowledge of its PN sequence and estimated timing and amplitude, regenerate 

the signal and 3) subtract the regenerated signal from the received signal rk(t) of the pre­

vious stage and thus create the cleaned version of the received signal rk+1(t) 
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The output of each stage is the decision on the strongest user and a modified 

received signal. Thus in multistage, decision are taken for all users. The reason for can­

celling the signals in descending order of signal strength are twofold. First, the correct 

data decision is the best for the strongest user in presence of all other users. Second, 

cancellation of the strongest user provides the most benefit to the other remaining users 

as the MAI from the strongest user is no longer present. 

The implementation of SIC is simple in concept but requires additional hard­

ware to take into account the delay in each SIC stage. Also, each time the profile of the 

amplitude strength of users changes, reordering of the users needs to be done. The most 

important problem in SIC is if the amplitude estimate of the strongest user in any stage 

(or in the earliest stages) is wrong. Then instead of MM cancellation, MM for the stron­

gest user gets doubled in amplitude and quadrupled in power. 
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Figure 2.1 The multi-stage SIC detection. 
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2.5.10 Parallel Interference Cancellation (PIC) 

The multistage PIC structure was introduced by Varanasi et al [26]. Also, 

application of the basic PIC structure is found in [20]-[21]. A survey on the PIC meth­

ods is provided in [17]. In PIC method, it is assumed that the amplitude estimate of all 

the users are known. In each stage of a multi-stage PIC, first the hard decision of the 

transmitted bit for each users are made. Then after regenerating the signal from the esti­

mated bits, amplitudes and spreading codes of all users, the interference component for a 

user by all other users are found out. This interference term is then cancelled from the 

received signal to get the clean signal for every user. In the next PIC stage, these clean 

signals are used for bit estimation. Normally matched filters are used for bit estimation. 
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Figure 2.1 PIC detector with hard decision. 
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A single stage of the PIC detector structure is shown in Figure 2.1 which is 

part of multi-stage PIC detector. Here in every stage hard decisions are considered. The 

initial data bit estimates, b(k), are derived from a matched filter detector. These bits are 

then scaled by the amplitude estimates and regenerated using the known spreading 

codes, which produces the delayed estimate of the MAI in the received signal for the kth 

user. After subtracting the estimated MAI (gk) from the received signal r(t), 

K 
r(t T) gk = b kaksk(t Tb)+ cru(t T b) + (bi :bdaisi(t Tb) (28)

ilk 

where, gk is the calculated interference term for kth user by all other users. The result is 

passed through a matched filter for each user to produce a better estimate of the data bit. 

This process can be repeated for multiple stages. 

Some of the existing PIC structures are discussed below: 

The performance of the PIC detector depends heavily on the initial data esti­

mates [26]. Therefore, using the decorrelating detector as the first stage significantly 

improves the performance of the PIC detector [27]. 

It is also possible to use the already detected bits at the output of the current 

stage to improve detection of the remaining bits in the same stage [25]. Thus the most 

up-to-date decisions are used. This detector is referred to as a multistage decision feed­

back detector. The initial stage could be a decision feedback detector, the conventional 

detector or the decorrelating detector. 
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It has been reported that a partial MAI cancellation in each stage, with the 

amount of cancellation increasing for each stage, is the most powerful of the subtractive 

interference cancellation [29]. 

Comparison between SIC and PIC: 

It is found that when all the users are received with equal strength, the parallel 

interference cancellation method outperforms the successive interference cancellation 

scheme. When the received signals are of distinctly different strength (the more impor­

tant Rayleigh fading case), the SIC scheme is superior in performance than the PIC 

method. The important thing to note is that in both cases, both (SIC and PIC) outper­

form the conventional detector [18]. 

2.6 Performance of Multi-User Detectors 

In the previous section, various multi-user detection methods were discussed 

which mainly take care of the near-far problem in asynchronous DS-CDMA. This sec­

tion considers the performance of those multi-user detectors. It is observed that though 

it is possible to have an optimum detector (solution of maximum likelihood criteria) for 

asynchronous DS-CDMA systems using Viterbi detector it is not possible to implement 

it for a large number of users (> 10) present in a system, since it requires 2K states in 

Viterbi detector for K users[8]. Also the optimum solution requires knowledge of the 

amplitude for each user. The decorrelating detector, which does not require amplitude 

information, is an optimum solution for both synchronous and asynchronous transmis­
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sion. But for asynchronous transmission the decorrelating detector requires matrix 

inversion of size NK X NK, where K is the number of users and N is the message length 

[9]-[10]. The minimum mean square error detector requires amplitude estimation, as 

well as, matrix inversion of same size as the decorrelating detector [14]. The decision 

feedback detector requires Cholesky decomposition of the decorrelating matrix [23]­

[24]. Thus all the non-recursive methods although are optimum or near optimum, are 

not implementable in real time communication system. 

The recursive detector mainly uses minimum mean square error criteria to 

derive the recursive algorithm [48]. The recursive detectors thus produced use the least 

mean square and the recursive least square adaptive algorithm [30]-[35]. Recently a 

recursive algorithm has been developed from nonlinear optimization which is known as 

the linearly constraint constant modulus algorithm [50]. All of the above mentioned 

algorithms use short code and although they are suboptimum, they are implementable in 

real time communication system with varying degree of hardware complexities depend­

ing on the algorithm chosen. Due to this reason, in Chapter 3, the above mentioned 

important multi-user adaptive methods are reviewed. 

The subtractive interference cancellation schemes are implementable (mini­

mum hardware complexity), but their performance is not comparable to the recursive or 

non-recursive detectors. The simulation results on parallel interference cancellation 

shows that maximum number of users is half of the processing gain and for a signal 

power 6 dB less than the maximum signal power [57]. The bit error rate (BER) found 

are far worse than the BER for a single user in additive white Gaussian noise (AWGN). 
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For successive interference cancellation, the simulation results reported are for number 

of users one half of the processing gain. The reported BER is quite poor compared to the 

single user case under AWGN [22]. Thus the recursive algorithms show the best perfor­

mance in terms of bit error rate with higher hardware complexity. 

For less number of users present in the system, adaptive multiuser shows per­

fect multiple access interference cancellation. However, as the number of users in the 

system increases, beyond a point, the adaptive system can only partially cancel the mul­

tiple access interference term. Due to this problem, adaptive multi-user detector loses 

the near-far resistance. To cancel the MAI term completely, a new method is proposed. 

In this new method, the converged tap-coefficients of adaptive algorithm are used along 

with subtractive cancellation scheme. Since in this proposed method, the subtractive 

scheme uses the soft estimates (the amplitude and bit), the overall system remains lin­

ear. This subtractive cancellation scheme is discussed in Chapter 4 in detail. Also the 

theoretical bit error rate of the proposed method is calculated in that Chapter with and 

without Rayleigh fading in presence of additive white Gaussian noise. 

Thus in the proposed method, recursive multi-user detection is combined with 

the subtractive interference cancellation scheme to get a overall superior performance, 

which is practically implementable. The subtractive scheme used is different from the 

existing PIC and SIC methods. 



46 

Chapter 3. Recursive Interference Cancellation 

In this chapter the adaptive decorrelating detector is discussed as a viable option 

for replacing the linear decorrelating detector for synchronous and asynchronous DS­

CDMA. As discussed in the last chapter, the linear decorrelating detector requires on line 

real time inversion of large matrices. Instead, the adaptive system uses simple recursive 

structure such as the least mean square (LMS) adaptation to cancel interference. First, the 

LMS algorithm is presented for interference cancellation in the presence of channel fading 

and without fading. Other adaptive processes considered in this chapter are the recursive 

least square (RLS) algorithm and the linearly constrained constant modulus algorithm 

(LCCMA). The performance of these two algorithms are compared with the LMS algo­

rithm. The linear minimum mean squared algorithm will be studied first, as most of the 

adaptive detectors are implementing it adaptively. 

3.1 Minimum mean squared error Detector 

The linear decorrelating detector, as mentioned in chapter 2, has many advan­

tages. But the main disadvantage is that it causes noise enhancement. An alternative liner 

detector, the minimum mean square error (MMSE) detector, takes this into account. Given 

y[n] the matched filter output, the objective of the MMSE detector is to find the transfor­

mation L which cancel the interference present in y[n]. This is done by minimizing the 

error, 

E = E [lb - L y12] (29) 
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where, b is the data vector and y is the matched filter output as explained in section 2.4. 

This error can be minimized with respect to L as shown in section 2.5 to get, 

1 (30)LMMSE 
[R + 

2A -21 

Thus the linear MMSE has the features of the decorrelating detector, except 

that it requires knowledge of the received amplitudes. If the background noise level or 

the kth user received energy dominates, then the MMSE detector approaches the con­

ventional single user matched filter. If the background noise level vanishes, the MMSE 

detector approaches the decorrelating detector [7]. 

The great advantage of the linear MMSE detector is the simplicity in convert­

ing it to adaptive algorithm using training sequences and adaptive FIR filter. The detail 

of the adaptation process is explained below. 

The LMS algorithm normally uses a training sequence to adapt the tap coeffi­

cients which cancels the MAI present in the demodulated desired signal. The training 

sequence is normally transmitted from the transmit end, thus in the received signal it is 

present along with other users' signals. The same training sequence is also known to the 

receiver and using that information, the adaptive process finds the tap coefficients (wk) 

which are used to demodulate signal. In presence of a new user, all the existing users 

also need to retrain the tap coefficients. The LMS algorithm is implemented by a bank 

of finite impulse response (FIR) filter along with the algorithm to change the tap coeffi­

cients. For each user, a separate adaptation process is required at the base station which 
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Figure 3.1 The MMSE receiver at baseband 

works for all in parallel in presence of a new user. The demodulation for the desired kth 

user's bit is done by correlating adapted tap coefficients wk with the received signal 

r[n], 

1; k(n) = sgn(wkrt(n)) (31) 

The structure of the adaptive filter is shown in Figure 3.1. It consists of a FIR 

filter with adjustable tap weights whose value for nth bit period and for kth user is given 

by wk(n)=[wi(n) w2(n) wL(n)]. Here, L denotes the length of chip sequence and 

equal for one bit period. Here, the number of taps equals to L. 

During initial tap adjustment process, an additional signal d(n), the training 

sequence, is supplied along with the usual received signal. This training sequence pro­

vides a frame of reference for adjusting the tap coefficients (wk) of the FIR filter. The 

vector of the tap inputs at bit period n is denoted by r(n)=[ri(n) r2(n) .... rL(n)]. By corn­
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paring the estimate (wtk(n)r(n)) with the desired response d(n), an estimation error e(n) 

is produced. Thus, the estimation error, e(n) = d(n) - wtk(n)r(n). The objective of the 

adaptive algorithm is to minimize this estimation error in mean square sense such that it 

results into the decorrelating coefficients wk and provides best estimate of d(n). 

If the input vector r(n) and the desired response d(n) are jointly stationary, the 

mean squared error J(n) (= E[Ie(n)12] ) at the nth bit period is the quadratic function of 

the tap-weight vector which can be written as [53], 

J(n) = 62d - wtk(n)p -pwk(n) +wtk(n)Rwk(n) (32) 

where, a2d is the variance of the desired response d(n), p is the cross-correlation vector 

between the tap-input vector r(n) and the desired response d(n) (p = E[r(n)d(n)]) and R 

is the correlation matrix of the tap-input vector u(n) (R = E[r(n)rt(n)]). 

The dependence of the mean-squared error J(n) on the elements of the tap-

weight vector wk(n) as a bowl-shaped surface with a unique minimum. The adaptive 

process is continually seeking the bottom or the minimum point of this surface [53]. At 

the minimum point of the error-performance surface, the tap-weight vector takes on the 

optimum value wo,k, which is defined by the normal equation RW0k= p and the mini­

mum mean-squared error equals to Jmin = cr2._ d - ptwo,k 

Differentiating the mean-squared error, J(n) with respect to the tap-weight 

vector w(n): 

aV(n) (n)J(n) = 2p +2Rw(n) (33) 
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and the updating of the tap-weight vector is done as, 

w(n + 1) = w(n) + 0 .511.[V (n)] (34) 

The simplest choice of the estimate of R and p is to use the instantaneous esti­

mate that are based on sample values of the tap-input vector u(n) and the desired 

response d(n). Then the estimate of R is given by Re(n)=u(n)ut(n) and the estimate of p 

is given by pe(n)=u(n)d(n). Correspondingly, the gradient vector will be of the form: 

O(n) = 2r(n)d(n) + 2r(n)rt (n) w (n) (35) 

Now substituting this into the updating of the tap-weight vector, the LMS 

algorithm is given by, 

+ 1) = Cv's (n) + gr(n)[d(n) r(n))7t (n)1 (36) 

Then the minimum mean squared error is equal to, as mentioned 

earlier, Jmin = n}d-ptwo, and the tap weight error vector for the LMS algorithm can be 

given as, Ek(n) = w k(n) wog . where, wo,k defines the optimum Weiner solution for the 

tap-weight vector [53]. 

Ideally, the minimum mean squared error Jmin is realized when the tap-

weights wk(n) of the FIR filter approaches the optimum value wo,k defined by the nor­

mal equation. But as the LMS algorithm relies on an estimate for the gradient vector, it 

results in a tap-weights estimate which approaches Ivo( after a large number of itera­

tions and then fluctuates about wok. In terms of tap-weight error vector, E(n), we may 

express the mean-squared error, J(n), as J(n) = Jmin + et(n)Re(n). Then the average 
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mean-squared error, E[J(n)], converges to a steady state value if the step size parameter 

p. satisfies the condition [53], 

0 < µ <21( total input power) (37) 

So for a stationary input the total input power equals Lp(0) where L is the 

number of taps and p(0) is the autocorrelation function of the tap inputs. 

The LMS adaptation using MMSE rule requires the following information 

when applied for DS-CDMA: 1) the training sequence must be known to the receiver, 

but the signature waveforms of the interfering users need not be known to find each 

user's adapted coefficients wk, 2) the timing of the desired user must be acquired, 

whereas the timing of the interfering users need not be acquired and 3) knowledge of the 

signature waveform of the desired user in not necessary, but helps the initialization of 

the algorithm. 

In order to understand the capabilities and limitations of LMS adaptation com­

pletely, it is necessary to specify in a more quantitative manner how the desired signal 

and interference manifest themselves in terms of the FIR filter coefficients at steady 

state [31]. Let wk(i) = [w0(i) w1(i) w2(i) wui(i)] be the vector of tap weights after 

the ith update for kth user and let the vector r(i) = [r0(i) r1(i) r2(i) 11,-1(0] represent 

the contents of the delay line at time t = iTb. The decision statistic for ith data is given by 

z(i)=wk(i)rt(i). Let dk(i) be the ith data bit and let sk=[Sk,0 Sk,1 Sk,2 Sk,L- 1] be one 
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period of the spreading sequence for the kth user. Then the content of the equalizer at the 

ith sampling time is given by (assuming user-1 is the desired user) [31]: 

K + 1 
u(i) = a s d (i) + a I d (i) + n(i) (38)

1 1 1 k k k 
k = 2 

where, /k(i) s(m) if dk(i-1) = dk(i), /km = s(km) if dk(i-1) = -dk(i) and= 

(m) r
-k LSk,L-m Sk,L-m+1 Sk,L-1 Sk,O Sk,1 Sk,2 Sk,L-m-1]; (39) 

(40)S'k(m)= [-Sk,L-m -Sk,L-m+1 "Sk,0 Sk,1 Sk,2 Ski-m-1]; 

and n(i) is a vector of independent Gaussian random variables with zero mean and vari­

ance of a2. The delays (the Tic) can be written as "Lk = m Tc where the delays have been 

considered as multiple of chip duration. 

Any adaptive equalizer which minimizes mean-squared error must choose its 

tap weights to be the solution to the normal equation [53], 

Rw1 =p (41) 

where, R is the autocorrelation matrix of the equalizer contents, E [rt(i) r(i)], and p is the 

correlation between the desired response and the equalizer contents, E [d1(i) r(i)]. The 

expected values imply an averaging over those quantities which vary with time (the data 

and noise sequence), while Tic is considered fixed for the kth user in the given system. 

From Eq. 38, it is seen that [31], 

p = (42) 
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and 

K+1 
R = a i2s is + a k`' kt (i)I k(01+ 62 (43) 

k = 2 

The average of the outer product of the interference terms takes the form 

t t
s' s'E[Ik(i)Ik(i)] = 2 sks k + 2k k 

(44) 

The tap coefficients which gives the solution to the normal equation Eq. 41 are given by 

wi=R-lp; (45) 

Now under steady state condition when there is no fading, ak is held constant 

and thus R is a constant. Under these circumstances, one can find wk which will be used 

for cancelling the MAI. Under steady state condition and no Rayleigh fading of channel, 

the minimum mean-squared error, Jmin, of the adaptive receiver can be given by [31], 

J min = 1 - SiWt (46) 

The probability of error of the receiver can be related to J min by invoking a 

Gaussian approximation to the resultant interference plus noise which passes through 

the adaptive receiver. Then, under this Gaussian approximation, the probability of error 

is given by [31]: 

(47) 
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where Q(x) is the standard Gaussian integral 

( 2 
Q(x) = expl dt (48) 

x 

In presence of Rayleigh fading the correlation matrix of the input vector r(n) 

becomes, 

K + 12 t 2 t 2INR = E(cz is is 1)+ E[a kI k(i)I k(i)1+ a (49) 
k = 2 

So R will be dependent on the amplitudes ak which are Gaussian random variables. 

Under Rayleigh fading the LMS adaptation does not reach the steady state solution pre­

viously obtained when the fading rate of channel is substantial in compare to the conver­

gence of the LMS algorithm. The LMS algorithm may diverge when the step size t does 

not satisfy the condition given in Eq. 37. To circumvent this nonconvergence problem, 

normalized least mean square (NLMS) algorithm can be applied under fading condition. 

The adaptation equation ( derived from Eq. 36 and Eq. 37) for NLMS algorithm is 

given by, 

w(n + 1) = w(n)+ P'NLM
Su(n)[d(n) wt (n)u(n)] (50)
2 

(n)ii 

where, Ilu(n)112 is the tap-input vector power. Eq. 36 and Eq. 37 are merged to form the 

NLMS algorithm except that here g.NLms is a constant term between 0 and 2 and IIu(n)112 

is the input vector power changing all the time. But even NLMS algorithm will not con­

verge to the steady state solution of the LMS adaptation under Rayleigh fading 
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Convergence in Error for 30 Users 
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Figure 3.2 Convergence on error term using the least mean squared ad­
aptation with 30 users present in the system 

condition. The simulation is carried out using LMS adaptation to get the adapted coeffi­

cients for 30 users present in the asynchronous DS-CDMA system. The Figure 3.2 

shows the convergence of error e(n) with number of bit iteration. The Gold code of 

length (L) 63 is considered to spread the data bits of each user. 

The convergence of gradient based LMS algorithm is very slow, especially when the 

eigen values of the input covariance matrix R have a very large spread [1]. In order to 

achieve fast convergence, complex algorithms based on least square approach are used. 

Here the rapid convergence relies on error measures expressed in terms of a time aver­

age of the actual received signal instead of statistical average as used in LMS algorithm. 

In the following section, usage of the recursive least square adaptive algorithm for asyn­

chronous DS-CDMA is discussed. 
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3.2 Recursive least squared algorithm 

In the least square algorithm the error is defined by e(i, n) = d(i) w k(n)r(i) and 

the conjugate of error is given by e* (i, n) . Here, r(i) is the input vector at time i and the 

wk(n) is the new tap coefficients at time n for kth user. e(i,n) is the error using the new tap 

gain at time n to test the old data at time i. The least square error based on the time average 

is defined as [1], 

J(n) = Xnie* (i, n)e(i, n) (51) 
i = 1 

where X is the weighting factor close to 1, but less than 1, and J(n) is the cumulative 

squared error of the new tap coefficients on all the old input vectors. 

The least squared solution requires finding wk(n) the tap coefficients of the FIR 

filter such that the cumulative squared error J(n) is minimized. It uses all the previous 

data to test the new tap coefficients. The parameter X is the weighting factor that weights 

the recent input vector u(n) more heavily in computation, so that J(n) tends to forget the 

old data in a nonstationary environment. Hence it is also called the forgetting factor. 

To obtain the minimum of least square error J(n), the gradient of J(n) is set to 

zero. This results in the equation, R(n) )7 k(n) = p(n) where, w k(n) is the optimal tap coeffi­

cients for the kth user [1] and 

n 

R(n) = Xn I ut (i)u(i) 

i = 1 (52) 
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n 

P(n) = A11 d(i)u(i) (53) 
i =1 

The recursive formulation of the least squared algorithm can be formed as [1], 

(n) = wt (n 1)u(n) (54) 

e(n) = d(n) (n) (55) 

-1
[R (n - 1)u(n)]

k(n) = (56)
t -1

X + u (n)R (n 1)u(n) 

-1 -1 t -1(n) = ( nR - 1) k(n)u (n)R (n - 1)] (57)
[R 

w(n) = w(n - 1) + k(n)e (n) (58) 

The weighting factor X does not change the rate of convergence of the adaptation, but 

does determine the tracking capability of the adaptation in non-stationary environment. 

The requirements of the recursive least squared (RLS) algorithm to work are 

1) the training sequence for the desired user must be known, 2) the timing of the desired 

user must be acquired and 3) the signature code of the desired user helps in initializa­

tion. 

The simulation is carried out using the RLS adaptive method for asynchro­

nous DS-CDMA system with 30 users present in the system. The Gold code of length 

63 is used for spreading the data bits for each user. The Figure 3.3 shows the conver­

gence in error e(n) with increase in number of bit iteration. 

Recently another algorithm has been applied for getting the multi-user adap­
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tive receiver in synchronous DS-CDMA communication. This algorithm is called lin­

early constraint constant modulus algorithm which has an advantage that it can work 

without training sequence. Also it performs better when the amplitudes of the individual 

user's are changing constantly like in fading [50]. This will be explained in detail in the 

following section. 

3.3 The constant modulus algorithm 

The constant modulus algorithm (CMA) has two desirable properties that set 

it apart from the adaptive techniques like LMS and RLS adaptation [50][51]. The CMA 

adapts blindly and hence it does not need any reference or training sequence. Secondly 

the CMA can be used in multipath environment as it restores back the constant envelope 

property of the received signal. The main CMA algorithm is given below. 

Convergence in Error for 30 Users 

100 200 300 400 500 600 700 800 900 1000No of bit iteration 

Figure 3.3 Convergence on error term using the recursive least squared 
adaptation with 30 users present in the system 
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The output y(n) of the constant modulus algorithm is written as 

y(n)=wt(n)u(n), where u(n) is the input vector and w(n) is the tap coefficients (t symbol­

izes the transpose). The goal of the CMA processing is to find a weight vector w that 

minimizes fluctuation in the envelope of the output y(n). Accordingly, the first step is to 

define a cost function J that measures how far the output is from a constant modulus 

state. One such function which has been used in literature is [51], 

1 2 2
./ = 4 ( IYI 5) ) 

(59) 

This cost function J simply measures the average variation of the envelope 

from an arbitrary constant value of S. The constant modulus algorithm iteratively solves 

for the minimum by using an approximation of the gradient descent approach. The gradi­

ent approximation is found by dropping the expectation operators < . > and then calculat­

2 tuing the gradient V with respect to w which is Vw = (IYI 5)y . This instantaneous 

gradient is then substituted into the standard gradient descent iteration to yield the con­

stant modulus algorithm, 

w(n +1) = w(n)-11(ly(n)12 6)yt (n)u(n) (60) 

There is a problem with this cost function J. Any output that is constant modu­

lus is a minimum of J. In practice this means that CMA can null the signal of interest and 

capture some other constant modulus signal instead [51]. It can be controlled in some 

instances by manipulating the initial conditions and the signal environment. In the next 

section, a method is presented that offers much greater control over the behavior of the 

algorithm [50]. 
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3.4 The linearly constrained constant modulus algorithm 

In this method, the constraints are constructed in such a way that the signal of 

interest is received without distortion regardless of how the algorithm updates the 

weights [50]. In a sense, the constraints define a signal subspace which ensures that the 

signal of interest is not nulled along with the interferers. The first step is to define a set 

of linear constraints on the weight vector w. Each constraint is expressed in terms of a 

constraint vector ck and a corresponding scalar constraint value fk. This can be written 

in matrix notation as Ctw = f, where the matrix C contains the ck vectors as columns and 

f is the vector of constraint values fk. The overall problem then is defined as 

min w 1/4<(1y12 - d)2> subject to Ctw = f. The constraint problem can be converted to an 

unconstraint one through the use of a preprocessor called the generalized sidelobe can­

celler. This structure essentially decomposes the adaptive weight vector w into con­

strained and unconstrained components. Figure 3.4 shows the weight vector 

decomposition of the generalized sidelobe canceller. From this figure the overall weight 

vector can be written as w = we Wswa where wq is the upper quiescent vector and Ws 

is the lower path blocking matrix. Both wq and Ws depend upon the constraint equations 

and are thus fixed, non-adaptive components. Ws is any matrix which satisfies CtWs = 

0. The upper path vector wq ensures that the constraint equations are satisfied and is 

given by wq = C(CtC)-1f. The decomposition property can be easily verified. Clearly the 

adaptive weight vector wa is unconstrained and this implies that wa can be freely 

adapted using any criterion. Hence by using the generalized sidelobe canceller structure, 

the LCCMA problem can be stated as min wa 1/4<(1y12 d)2> and then the recursion for 
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y(k) 

Figure 3.4 The generalized sidelobe canceller 

wa will be [50]: 

w a(n + 1) = w a(n) + g(!y(n)12- 8);(n)u a(n) (61) 

The only difference between the update recursion for wa in LCCMA and that of w in 

CMA is the vector component in the driving term. For the CMA the driving term has the 

original input vector u(n) while for LCCMA the driving term has the transformed data 

vector ua=Wsu. Though these recursion are very similar to CMA, the LCCM algorithm 

does not update iteration for wa alone but together with the generalized sidelobe cancel­

ler. 

For DS-CDMA single user detection a proper choice for the linear constraints 

would be to pass the desired user's signal with unity gain and to null the interfering 

users. Here, C = s1, f = 1. So the constraint will be Ctw = 1; which is equivalent to w = 

s1 + wa and siwa = 0. Now the constraint portion of the weight vector is wq = s 1 . The 

lower blocking matrix W is chosen to be W = [ el e2 .... eui]; where el is the lth eigen 

vector corresponding to the zero eigen values of matrix A of dimension L x L and given 

by, A = [ sti 0 0 ... O]t. Then the LCCM algorithm is given by [50], 
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wa(0)= [ 0 0 0] (62) 

w(m) = s1 Wwa(m) (63) 

Yi(m) = wtu(m) (64) 

ua(m) = W u(m) (65) 

and the update of wa is given by Eq. 61. 

The requirements of the LCCMA to work are: 1) the knowledge of the chip 

sequence for the desired user must be known and 2) it requires the timing of the desired 

user. 

The simulation is carried out using the LCCMA adaptive method for asyn­

chronous DS-CDMA system with 30 users present in the system. The Gold code of 

length 63 is used for spreading the data bits for each user. The Figure 3.5 shows the con­

vergence in error e(n) with increase in number of bit iteration. 

Convergence in Error for 30 Users 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No of bit iteration 

Figure 3.5 Convergence on error term using the LCCMA adaptation 
with 30 users present in the system. 
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3.5 Comparison of adaptive methods 

The least mean-squared (LMS) algorithm is the simplest and is having the 

least complexity from the hardware point of view. But the rate of convergence for the 

LMS adaptation is very slow. The LMS algorithm does not pose any bound of the num­

ber of users that can be present in the system. Although for convergence, as the user 

number changes, the critical step size of the algorithm has to change to maintain stabil­

ity of the system. As the number of users becomes large, in addition to the minimum 

mean-squared error (Jmin), the error will have an excess average mean-squared error. 

Thus the near-far property of the LMS adaptation for DS-CDMA loses the ground for 

large number of users present in the system, which is a must for higher capacity. The 

second problem is that, if the step size is maintained same as for steady state condition 

for some number of users, under Rayleigh fading, the LMS algorithm may show insta­

bility. The normalized least mean squared (NLMS) algorithm shows a better way of 

handling the Rayleigh fading situation. Under Rayleigh fading the NLMS algorithm 

will try to follow the minimum point of the convex bowl of the error surface, but as it 

changes constantly, it never converges to the steady state value. Thus the overall receiver 

will lose the bit error rate performance. 

The recursive least square algorithm has the best advantage of very fast con­

vergence as well as convergence under nonstationary environment like Rayleigh Fading. 

But RLS algorithm is hardware intensive. Also, the convergence of RLS under Rayleigh 

fading will not be same as under steady state condition. So it will have same BER per­
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formance loss as the LMS adaptation. The RLS algorithm can be applied in synchro­

nous and asynchronous DS-CDMA. But it should be noted that when applied in asyn­

chronous system, the weighting factor has to be small for time varying system which 

may cause instability because R(n) tends to be ill-conditioned [52]. This happens espe­

cially if the noise is low and number of users approaches L/2, where L is number of chip 

in a bit time period (the processing gain) [52]. 

The linearly constrained constant modulus algorithm is the most promising as 

it can work in multi-user and Rayleigh fading condition still providing the steady state 

performance under blind adaptation. Till now it has been applied to the synchronous 

DS-CDMA system. It also has been simulated for asynchronous CDMA system in this 

thesis. But it is hardware intensive as it requires eigen values and eigen vector calcula­

tion of matrix A to find the matrix W. Moreover it has the capture problem and as the 

adaptation process is a nonlinear one, it has local minima. 

All the above mentioned adaptive processes have mean squared convergence 

error in presence of large number of users in the system as shown in the simulations spe­

cially for the LMS and LCCMA adaptation. This reduces the near-far immunity of the 

DS-CDMA receiver. This is more prominent in DS-CDMA asynchronous channel, as it 

is dimension limited more than the synchronous system. In the next chapter, the deci­

sion feedback cancellation structure will be discussed which helps the adaptive pro­

cesses to regain the lost near-far immunity even in presence of large number of users. 
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Chapter 4. Near-far resistant multiuser adaptive system 

In this chapter an asynchronous channel for DS-CDMA is considered and 

gradually the multi-user access interference (MAI) problem is solved at base station 

using adaptive method. According to the explanation given in chapter 3, for further the­

oretical study, the least mean square (LMS) algorithm is considered as the adaptive 

method to get the tap coefficients wk. At first the channel model will be restated for the 

asynchronous DS-CDMA transmission. The LMS adaptation for DS-CDMA asynchro­

nous channel was first considered on the received signal in [31] where its steady state 

solution was also mentioned. It was shown in chapter 3 that under fast Rayleigh fading 

condition-the adaptation process will fail to converge for the same step size as it was 

considered for system without Rayleigh fading. To prevent this one may consider Nor­

malized LMS adaptive method. In the proposed method this has been avoided by gener­

ating a signal from the knowledge of all users' spreading sequence and their delays in 

bit arrival time. Also in the proposed method, application of decision feedback cancella­

tion scheme circumvents the problem of near-far resistance due to the mean-square error 

and convergence error in adaptive process. Finally, the theoretical bit error rate has been 

found out under additive white Gaussian noise condition with and without Rayleigh fad­

ing present in the system. 
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4.1 Channel Model 

The baseband received signal for the asynchronous AWGN channel with mul­

tipath Rayleigh fading is formulated as, 

N K 
r(t) = a kb k(n)s k(t nT b- k) + att(t) (66) 

n = -N k = 1 

where, r(t) is the received signal, ak is the kth user amplitude (in presence of fading, it is 

time varying complex number), bk(n) is the nth bit of the kth user and sk(t) is the kth 

user's spreading chip waveform. Tb and Te are bit and chip duration, respectively. The 

channel noise u(t) is modeled as normalized AWGN with variance o.2. The delay tic can 

be written as tk=lkTc, where lk is an integer. In the asynchronous channel model, it is 

assumed that the kth user is shifted by one chip duration Tc successively from the previ­

ous user. Also, it is assumed that the length of complete chip sequence is L, chip value is 

limited to +/-1 and bit duration Tb=LTc. 

Adaptive receivers, as mentioned in [36]- [38], work directly over the received 

signal r[n] = [r1(n) r2(n) rL(n)]; ri(n) = ith bit of r[n] sampled at chip rate. As 

shown in Figure 4.1, the received signal at the base station consists of all transmitted 

users {a1 b1, a2b2, aKbK } coded by signature code (sk) and received after delay of ti, 

T2..., TK. The base station has the knowledge of code sk and by synchronization it deter­

mines Tic. The base station adaptively decodes the received signal by the sequence {w1, 
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w2,....,wK). To obtain bk(n), the conventional method adaptively generates a sequence 

wk for the kth user, such that the sign (sgn) of the inner product of wk and r[n] estimates 

the transmitted bit of the desired user: 

bk(n) = sgniwkrt[rd) (67) 

where, rt[n] signifies transpose of the vector r[n]. These method do not consider the 

case when the received signal is corrupted by fading (abrupt signal attenuation) where 

due to fading the adaptation process converges slowly or does not converges at all. 

4.2 The Proposed Adaptive Receiver 

To have the same convergence rate under fading condition, in the proposed 

method, the adaptation (as shown in Figure 4.2) is operated on a generated signal r'(n). 

So, the attractive property of locking onto the signal is lost, which is self adaptation 

Channel 
Noise 

aibi(n) au(t) 
Hb' i(n) 

r [nl 
Decision 
Blocks 

KbK[n) Channil 
Delay 

r(t) 

P 1111wb'ic(n) 

Transmit side 

K users separately 

Channel 1 4WK 
Receiving side at Base 
Station 

Figure 4.1 Model of transmitter and receiver structure for DS­
CDMA
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d[n]=bK-1-1(n)K+ bK +l(n)
Known bit modulated with 

known PRN and known 
energy 

Figure 4.2 Least Mean Square Adaptive method 

without knowing the time delay ('tk) from the adapted coefficients [31]. But the pro­

posed generated signal (along with training sequence) allows the adaptation to be inde­

pendent of the channel. Here, the received signal is generated knowing the existing 

users' chip sequence and their time delays as shown in Figure 4.3. Also it is assumed 

that once new users start communicating, their chip sequences and their time delays are 

known (this part will be covered separately in chapter 5 on synchronization) at the base 

station. Figure 4.3 shows the proposed structure, which avoids higher bit error rate due 

to Jmin and convergence error using the decision feedback cancellation similar to the 

parallel interference cancellation scheme where the LMS adaptation is used on the gen­

erated signal. 

A method for estimating the amplitude of the signal akbk is shown in Figure 

4.4. A similar approach is outlined by Moshavi and is known as parallel interference 

cancellation [7]. Given the adaptive coefficients wk, the first set of amplitude aik for kth 

user (here superscript 1 denotes the first iteration) are estimated and are used subse­
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quently to estimate the received signal r[n]. This estimate of the received signal is called 

[n], generated using the amplitude estimate alk and the signature code (sk) for each 

user. The error signal El [n] = r[n] [n] is fed to the second stage of decision feedback 

cancellation. 

The approximate amplitude a k for the kth user is formed by: 

aki [n] = (w krt [12]) (68) 

The error signal, 

K + 1 
1 1E [n] = r[n] a ks (69) 

k = 1 

This process is repeated where El [n] is the input to the decision feedback of the second 

stage. The error for the estimate of amplitude is 8k = a kb k alk. The error El[n] is (tk is 

not shown for simplicity): 

K 
El [n] = 5 s (70)k k 

k = I 

Let 8 = sup { abs(8k)} (sup = supremum), we can rewrite (26) as: 

1 
E [ n J Sy[n] (71) 

If the adaptation is converging, then 0<8<1. If the decision feedback cancellation pro­

cedure is repeated for m stages, 

em [it] 5_ 5" y [n] (72) 
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As m becomes large, the residue term Emini will tend to zero since r goes to zero. 

In the presence of noise, the noise energy (variance o2(a1 [n])) at the output 

El (n) 

2 I 2`. 2(E [n.J) = (1+x12 +...+xK+ (73) 

where, 

2 
(74)xk = wkwk 

Hence, the noise energy at the output (02(E1 [n])) is the addition of noise variance for all 

users multiplied by the coefficients wkwik. The details of noise magnification through 

number of decision feedback cancellation stages are discussed later in this chapter. 

Decode Code 
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wl 
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I I at I 
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r(t) 

afterReceived 
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El [n] 
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Figure 4.4 Single stage of Decision Feedback for Amplitude estimation 
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4.3 Bit error rate in the Proposed Method 

In the last section a method of decision feedback cancellation (DFC) is pro­

posed for wk which partially decorrelates the user from multiple access interference 

(MAI). This method is similar to Parallel Interference Cancellation (PIC) method. In 

this section the bit error rate is calculated under additive white Gaussian noise condition 

for individual user in DS-CDMA asynchronous channel when demodulated using the 

proposed demodulator. It is not possible to determine the exact BER theoretically. 

Instead the upper bound of the BER is found out. The received signal Figure 66 is 

repeated here for convenience, 

N K 
r(t) = a nT T k) + 6u(t) (75)k, nb k, n(n)s k(t

n= N k = 1 

where, ak = 1 and tk = (k-1)Tc. Now, in the first stage of DFC, for kth user the amplitude 

will be, 

1,k 
(76)an "wk bk,n+8k,n+zk,n 

where k stands for kth user, n stands for nth transmitted bit, b stands for bit, 8 (<1) stands 

for MAI present in the demodulated signal and z is the demodulated noise part. The wk 

are the partially decorrelating coefficients found from the LMS adaptation. Now the res­

idue El formed after stage one can be given as: 
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K
 
s k(t (k 1)T c) =En

1 

I (bk, n+ 8k, n+ Zk, n) (77)
k =1 

K
 
k(t (k 1)T c) + a2 u(t)(8k, n+ zk, 

k = 1 

At this point it is observed that 8k is not same for varying k and n. Similarly, 

Zk,n is also not a constant. Hence, let us assume that Sn = supremum of { 81,n 8K,n and 

zn = supremum of (z1, zi,n). Normally the noise term Zk,n = (wk.wlk)62u(t). Thus 

the el has a noise variance that can be written as 

K 
var(el) = 62 1+ wkwk

tl 
(78) 

k = 1 

which is same as Eq. 73. Now replacing 8k n and Zk,n by Eon and zn respectively in Eq. 

77, 

K 
1 

(k 1)T c) + a
2 

u(t) (79)En = (8n zn )s k(t
 

k = 1
 

Now, in the second stage of DFC the amplitude estimate for kth user will be, 

2, k = (8 +z, 
n)-8 (8.n +z, n )+z, n (80)k n n 

and the residue term E2n after second stage of DFC will be, 

K 

En
2 

= I (5n(8n+zn)zn)sk(t(k 1)T c) + a2 
u(t) (81) 

k = 1 

In the third stage of DFC cancellation, the amplitude estimate for kth user will be: 
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3, k 2 an = + Snzn-z )+5 (on
2 + 8 nzn-zn)+zkn (82)n n 

and the residue term On after third stage will be: 

en
3 

= (5n2 + nzn- zn )+z (k - 1)T c) + a
2

u(t) (83)n nisk(t 
k 1 

For q number of DFC stages, the amplitude estimation of kth user and the residue after 

qth stage can be given as: 

k 1 aq, = (-1)q 
iX + nXi zn (84) 

K
 
sq = -[(-1)q 1

(8nx) + z is (t - (k 1)T c) + a
2
u(t) (85)n k 

k = 1 

where, 

X = 8q 1 + [5qn 2 Sq 3 q 4 - lizn (86) 

The first term in x represents the MAI present and the rest represents the magnified 

noise term. Adding all the estimated amplitudes of q stages, 

q - 1
b (8nX) z (87)k, n+[(-1) 

So the variance of the noise term in estimated amplitude, 

,2 ,4 2 2q 
n = l+on+on+ + 82(q zncY + 5n (88) 

Thus the probability of error can be given as 
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I 

Pe = Q 1 

(89) 
var(an), 

where, Q(x) is given in the Eq. 48. This is the upper bound of bit error rate. 

Similarly, under Rayleigh Fading condition one can represent the received signal 

by r(t)= a(t) exp(-j0(t))s(t)+n(t) where s(t) is the transmitted signal, a(t) is the gain of 

the channel, 0(t) is the phase of the channel and n(t) is the additive white Gaussian noise. 

Then, the bit error rate can be given as [1], 

Pe = j-E-1 
1 

(90) 

where, 

( 
Eb 

2 
= 

2 
(91) 

0 var(lak)1a 

4.4 Noise Propagation through DFC stages 

It is mentioned in Eq. 73, section 4.2 that received noise will be magnified in 

each stage. First only a single stage is considered with only Gaussian noise as the 

received signal for synchronous DS-CDMA case. Here it is considered that the adapta­

tion process is converged to wk tap coefficients for the kth user in the synchronous case. 

The Gaussian noise source produces N data points for one bit interval in absence of any 

transmitted bit from all the users. The amplitude estimate for kth user in the first stage of 

DFC scheme will be a k 
= Nwk' If the Gaussian source is having a variance of 62, 
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then al 'k will have a variance of 621.k=(wkwtka2). Now in respreading, al 'k will be used 

to multiply the spreading code sk and the respreaded sequence for all the users will be 

added to form V, the estimate of the received signal. Here the kth respreaded sequence 

will constitute a random sequence with +/-al,k coefficient which will be similar to a 

binomial random variable. The addition of spreaded sequence for all K users will pro­

duce a random sequence with almost Gaussian distribution with a variance as shown in 

Eq. 73. Now the effect of all the stages together is explored. To make the computation 

simpler, it is considered that the error in the convergence in the adaptation process, 5i, = 

supremum of {8_1,n 51(4,} and an = supremum of { al 'n aK,n } Now the residue at 

the end of the first stage will be 

/ K \ K 
E 

1 = N- 1 al 'nsk 
(N-al 1 sk (92) 

k=1 ) k= 1 

The amplitude estimate in the second stage will be 

/ K \
2,k ( 1 K a = N- I al'nsksk= IN -al I sksk= al -al (1 +51) = a 16 

(93) 
k =1 ) l k=1 ) 

1 1 

So, the residue at the end of second stage will be, 

/ K K 
2 1 1 

E = N-a 1 sk+a 611 sk (94) 
k= k= i1 1 

Similarly, the residue at the end of third stage will be, 

) K K K 
3 1 I I 2 

e = N-a I sk+a 6 s 81 Y s (95)a . k 
k=1 

1

k=1 k= I " 
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At the end of q stages, the residue will be for noise only case, 

r q K \\ 
sq = N+ L.c" (-1)4 1 al 57- s

k (96) 
i = k = 1 1) 

Thus, one can observe that the noise term does not get magnified beyond a point with 

increase in the number of DFC stages. This is valid even for asynchronous DS-CDMA 

demodulation. 

One can also think one stage of the Decision Feedback Cancellation Stage as a matrix 

multiplier followed by subtraction from the received signal itself. So, if the received sig­

nal is r[n] (sampled version), the output of the inner product for one user r[n]wkt and 

the respreaded signal will be r[n]wktsk. Here wktsk is a matrix. So the decision feed back 

cancellation is a linear process and as whole works as a linear filter. The condition of 

stable operation of the filter is that the error bound of the convergence in adaptation (5) 

is less than 1. As long as the filter is stable, the noise will not increase beyond a limit or 

in a sense its statistics will remain almost constant. 
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Chapter 5. Synchronization 

In this chapter a theory has been developed which will help to synchronize any 

new user entering the system. Synchronization is the basic requirement in communica­

tion and it has to be done even before the demodulation of the transmitted bits start. 

Synchronization in digital communication can be divided into three main parts: fre­

quency synchronization, phase synchronization and timing or bit synchronization. Here 

the timing or bit synchronization aspect is only considered. 

Before discussing the theoretical aspect, it would be better to mention that 

most of the synchronization works for multiuser DS-CDMA attempt to recover bit tim­

ing under the assumption that the pseudo-random sequences used for spreading the 

transmitted bits are long. These works mainly try to solve the problems in application of 

IS-95. Recently, it has been shown that linear decorrelating detectors along with adap­

tive decorrelating detectors are promising in respect to increase in cell capacity and bet­

ter multiple-access interference cancellation which in turn allows more flexible power 

control. Some of the recent works deal with short pseudo-random codes which are most 

suitable for adaptive and linear decorrelating detectors. In the previous chapter, a novel 

method of decision feedback cancellation using coefficients from least mean square 

adaptation is used to get back near-far resistance of adaptive method in presence of a 

large number of users. But this large capacity cannot be achieved if a new user cannot be 

synchronized. Here, after preliminary discussion of other synchronization procedures, 

the importance of usage of the same decision feedback cancellation scheme is stressed 

where it is assumed that a new user arrives in the system when existing users are already 
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using decision feedback cancellation scheme. The simulation results will be presented 

in chapter 6 supporting the theory developed in this chapter. 

The basic theory behind all the methods stated in the following sections is to 

cancel the cross-correlation component of existing users in the received signal so that a 

clean signal is found out with the new user's received signal. This clean signal is corre­

lated with the known pseudo random sequence of the new user to find the bit timing. 

Success of a procedure depends on how much clean signal it can produce. 

5.1 Synchronization using Blind Adaptation 

In case of the linear decorrelating detector, it is known that one can cancel the 

multiple-access interference term completely. In that situation, the coefficients is found 

out by inverting the correlations matrix and used in decorrelating the matched filter out­

put. In the adaptive decorrelating detector, the tap coefficients of adaptive FIR filters are 

found, and used in the matched filter instead of the PN sequences. But applying least 

mean square adaptation on the received signal means training sequence will be required 

for the new user as well as all the existing users, though it can solve the problem of bit 

synchronization for the new user. 

Instead of using LMS adaptation involving training sequences, it is also possi­

ble to have blind LMS adaptation on the received signal, although it converges slower 

than LMS adaptation. The blind adaptation is also affected by channel fading, which is 
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also true for LMS adaptation with training sequence transmitted from the mobile user. 

The details of blind adaptation is given in chapter 2.. 

If the blind adaptation converges in the presence of a new user then one can 

use it's coefficients and demodulate all the existing users correctly with the correct esti­

mation of their amplitudes. These estimated amplitudes can be re-spreaded using the PN 

sequence for each existing user and cancelled from the received signal to form a clean 

signal with the new user and noise only. Then by correlating the clean signal with the 

PN sequence of the new user we can find the bit timing of the new user. This will be 

possible only if the blind adaptation converges to zero. 

In reality the blind adaptation in the presence of channel noise and fading will 

not converge to zero. Then one can use the decision feedback cancellation scheme along 

with the converged tap coefficients of blind adaptation which will again produce a clean 

signal. But this procedure will be time consuming as the LMS blind adaptation con­

verges slowly. The recursive least square adaptive method can be used to increase the 

convergence rate at the expense of computational complexity. But it will still take con­

siderable amount of time. Figure 5.1 shows the decision feedback scheme along with 

blind adaptation for synchronization. The problem of this method is that the blind adap­

tation as it works on the received signal will be affected by fading. In the next section a 

method is described which does not get affected by fading. 
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5.2 Synchronization using averaging 

It is observed that the convergence of the blind adaptation is difficult in pres­

ence of fading and it is also a slow process. In the following method, the usage of the 

blind adaptation is circumvented using a training sequence only required for the new 

user(s). As it does not depend on adaptation on the received signal, its process of syn­

chronization will not be hampered by channel fading though it will increase the acquisi­

tion time. 

The concept of this process takes advantage of the fact that short PN 

sequences are used for adaptation. This process starts if the residue from the decision 

feedback cancellation scheme increases beyond a certain limit. In this procedure, the 

new users will send a constant bit signal modulated by their own PN sequence. Prefera­

bly, this PN sequence length is equivalent to a bit time period. At the receiving end in 

the base station, the received signal is passed through a filter with the same PN coeffi­

cients of the new user and the output is averaged over a bit time period. Because, all the 

existing users are sending random data bits, the crosscorrelation which is fixed depend­

ing on the PN sequences of all other users and their time delay will be fixed but chang­

ing with the sign of transmitted bit. The autocorrelation for the desired user will be a 

constant number as the transmitted bit for new user is kept constant. As the number of 

bits averaged increases, the component due to crosscorrelation will diminish in compare 

to the autocorrelation which is getting added. Soon the autocorrelation of the PN 

sequence will be dominant and the bit timing will be clear. The mathematics of the aver­
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aging process is shown below. Here, r[n] is the sampled received signal r(t). Then in 

presence of K existing users and I new users, the received signal will be, 

K 1 

r(t) = a kb k(n)s k(t nT b k) + cs2u(t)+ a ib i(n)s i(t nT b i) (97) 
k = 1 i =1 

where, ti for i=1,..,I are unknown and bi for i=1,..,I are constants. For 1=1, the average of 

the matched filter output is taken for the new user over N bit periods. The averaged term 

will be, 

N K 
n(n)s k(t nT b 'c k) + u(t) + Na is i(tr mfavg = aka nbk, nT b tii) (98) 

n = 1 k = 1 n = 1 

where the first term is the average of MAI and as bk, is random, this average will 

reduce as N increases. The second term is the noise and the third term is the autocorrela­

tion which increases with N. 

The acquisition time will be dependent on three factors: the number of exist­

ing users, the time delay and the property of the transmitted bits for the existing users. 

The term property means the probability distribution of the transmitted bits. 

5.3 Synchronization using DFC scheme 

In this method, it is assumed that for the existing users adaptation is complete 

and tap coefficients of the FIR filter converged to wk for the kth user for k=1,...,K. Now 

these wk are used in a number of decision feedback cancellation stages. In the absence 



84 

of any new user, the residue of the last stage will be zero in the absence of noise and in 

the presence of noise, the residue will be the noise. If any particular user's PN sequence 

is correlated with this residue, it will show a negligible value. In presence of a new user, 

the residue will have the received new user along with the noise term, as well as the 

crosscorrelation terms between new user and old existing users. This can be correlated 

with the PN sequence of the new user and the peak in the correlation will point out the 

time delay. 

For understanding purposes a case is considered with two existing users. 

Now, synchronization for a new user is tried in presence of existing two users whose Tic 

are already known. For the two existing users, the w1 and w2 are also already known 

which partially decorrelates the desired signal from MM. In absence of a new user, let 

the received signal be r[n], then the amplitude estimations in the first stage of PIC will 

be, 

E1,1 = r[n] wt1 = a1b1 + 51 + z1,1 (99) 

and 

E1,2 = wt2= a2b2 82 + z1,2 (100) 

where Si and 52 are the MAI terms and z1,1 and z1,2 are the noise terms. In presence of 

the single new user the received signal will be r[n] + a3b3 s3(t-T3-nTb) and then the 

amplitude estimations for existing two users in the first stage of PIC will be 

= r[n] wti = + + + (101) 
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and 

E 1,2 = r[n] wt2 = a2b2 + 62 e2 + z1,2 (102) 

where ek stands for the interference due to the presence of the new user and all other 

symbols carry the same meaning as explained earlier. Now if the amplitude estimations 

are respreaded using their spreading codes and cancel them from the received signal, 

then the residue el [n] will be, 

el [n] = a3b3 s3(t -'r3 -nTb) + a2u[n] (Si + el + zi,i)si -(82 + e2+ zi,2)s2, (103) 

Now in the second stage of PIC, the amplitude estimation will be, 

E'2,1 = 81[n] wti = (Si + el + z1,1) 61(62 + e2-1- z1,2) + ei z1,1 (104) 

and 

E'2,2 = E[n] wt2 = (82 e2 z1,2) 62(61 + el z1,1) e2 + z1,2 (105) 

Now if S is the supremum of Si, Si, el and e2 then, 

£2[n] = a3b3 s3(t-T3-nTb) + 62u[n] + (8(28+ z1,2)-(8 + z1,1))s1 

(8(28 + z1,1) - (S + zi,2)s2, (106) 

Comparing (103) and (106), we find that the residue el [n]>e2[n] as S < 1 and this pro­

cess will continue if more number of stages are added. If S is small, then from E2[n] one 

can find the timing of delay for the new user by the correlation method. 
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The above mentioned case can be generalized for existing K users. For gener­

alization the number of new users are considered as I. This received signal will pass 

through number of decision feedback cancellation stages with known wk for existing K 

users. In presence of new users, the received signal can be rewritten as 

K I 
r(t) = a kb k(n)s k(t - nT b- tik) + a

2
u(t) + a ib i(n)s i(t - nT - i) (107) 

k = 1 i = 1 

The amplitude estimate in first stage of DFC for existing K users can be given as, 

1ak, n = a kb k+ 8k, n+ ek, n+ zk, (108)n 

The superscript 1 signifies the first stage and in the subscript k stands for kth 

user and n stands for the nth transmitted bit. The second term Sk,n stands for the conver­

gence error due to the crosscorrelation with the exiting users, ekn stands for the error 

due to the crosscorrelation with the new users and 2k,n stands for the noise term. For 

future calculations, the subscript k is removed and 8n = supremum (dk,n for k=1,...,K), 

en = supremum (ek,n for k=1,...,K) and zn = supremum (zk,n for k=1,...,K) are consid­

ered. So, (108) takes the form of 

1
an = akbk + 8n+ en + zn (109) 

Similarly, one can form the residue of the first stage as, 

En = - (8n + en + zn)s k(t -nT b- ) + u(t) +
 
k = 1 i = 1
 

1 2 
a ib i(n)s i(t -nT b- i) (110) 

In the second stage of decision feedback cancellation, the amplitude estimate 
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will be, 

2 an = ön - Sn(6n+en+Zn) 

and the residue will be, 

K 
En2 = [811(8n + en + zn) (en + zn)]sk(t- n Tb Tk) + a

2 
u(t) + (112) 

k = 1 

a ib i(n)s i(t - nTb - tii) 
i = 1 

If one considers q number of decision feedback stages (where, q>1), then the amplitude 

estimate at the qth stage will be, 

an = (-1)q 1
[x + 8 nX1 (e + z n) (113) 

and the residue term after the qth stage will be, 

K 
2u(t)+ 

E nq = -[(-1)q 1 nX + (e n+ zn)isk(t nTb - k) + 
k = 1 

I 
a ib i(n)s i(t - nTb - i) 

i = 1 (114) 

where, x is given by, 

4 - 1 r,q -2_ 8q 3 oq-4 ii(en+
X = ± Lo (115)n 

The total amplitude estimate will be, 

ak = a kb
k + en + zn +5nX (116) 
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The variance in the noise term will be, 

52 54 52(q - )02 82qvar(ak) (e n+ zn (117)n n 

So the probability of error for existing users in presence of new users can be given as 

(118)Pe = Q( var(ak)) 

In (114) it is observed that the first term is the residue of the existing users due 

to crosscorrelation with the new users and will be less in magnitude than that in (107). 

Hence, correlation of (114) and the new users PN sequence will result in faster acquisi­

tion of delay time. 

This synchronization using DFC stages is motivated by the work done in [46] 

where instead of DFC, stages of simple parallel interference cancellation structure was 

considered. Applying DFC with adapted tap coefficients instead of PN sequence in 

matched filter gives better results as it will be shown in chapter 6. 
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Chapter 6. Simulation results 

In this chapter the simulation results are presented in an attempt to prove the 

theoretical work done in the previous chapters. The simulations can be divided into 

three parts. The first part will show that all three adaptive methods (the least mean-

squared, the recursive least squared and the linearly constraint constant modulus algo­

rithm), suffer from near-far problem when large number of users are present in the sys­

tem. In the second part, using the decision feedback cancellation scheme proposed here, 

the adaptive methods regain the near-far immunity. For this simulation only the least 

mean square adaptive method will be considered. In the third part the results on syn­

chronization problem will be provided for two cases: using the method of averaging and 

using the residue of decision feedback cancellation. In the last simulation, a non-coher­

ent QPSK scheme will be proposed. Simulation on this structure is not considered here. 

But first of all, the asynchronous DS-CDMA system along with the choice of code for 

spreading sequence will be discussed. 

6.1 System model and spreading code 

The system will consist of the transmit side where the individual user are 

transmitting data asynchronously, the channel which introduces the channel noise mod­

eled as additive white Gaussian noise (AWGN) and Rayleigh fading which cause the 

amplitude of the signal to fade randomly and the receiving side which will have a few 

stages of decision feedback cancellation scheme using the adapted coefficients from the 
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LMS adaptation for the demodulation. Figure 2.2 and Figure 4.3 in chapter 4 show the 

system model. 

In the transmit side, the individual users modulate the data bit using the 

spreading sequence and then it is modulated at carrier frequency. To make the simula­

tion simple and to save time, all simulations are done in baseband. Thus the modulation 

in carrier frequency is not shown. Hence all of the simulations use a baseband BPSK 

model for the transmission, the channel and a coherent receiver. 

The choice of spreading sequence is very critical. Normally for CDMA the 

maximal length shift register (MLSR) sequences are considered. These are also called 

m-sequences. The MLSR sequences have very attractive autocorrelation properties, but 

for a fixed number of shift registers, their numbers are limited. The crosscorrelation of 

the two MLSR sequences of same length is not good. Moreover, for an asynchronous 

channel, it is required to have a large number of spreading sequences with good auto-

correlation and crosscorrelation properties. The gold codes have these good properties 

and normally used for simulation of asynchronous channel in the literature. The gold 

codes are normally generated from two m-sequences (preferred pair). The method of 

generating m-sequence and the gold sequence and their properties are discussed in [55]. 

It should be clear that due to the asynchronous nature of the received signal, the gold 

codes are required which helps to synchronize individual users. In synchronous channel, 

each individual can use a shifted version of the same m-sequence. For simulation, the 

channel is always considered asynchronous in nature. 
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In the simulation, gold codes of length 63 (=L) are considered and they repeat 

for every data bit period (Tb=LTc), where T, symbolizes the chip period. Thus L is the 

processing gain. The chip is considered to be a rectangular pulse. But in a real system 

this will be filtered using a raised-cosine filter to limit the radio frequency (RF) band­

width. The data rate is considered as 5Kbits per second. Thus the total bandwidth will 

be limited to 630 KHz keeping a provision of including 1/2 convolution coding to 

improve the bit error rate under rayleigh time-dispersive fading. If the 1/2 convolution 

error correcting coding is considered then the data rate will be 10 Kbits per second, thus 

the bandwidth will be 1.26 MHz, almost similar to the bandwidth considered for IS-95. 

For simulation, the asynchronous system is modeled by delaying the recep­

tion of the transmitted signal from individual users at the base station receiver at integer 

multiple of the chip duration Tc. In the real system, this delays will be random. 

At the receiving end, the data will be sampled at least at the Nyquist rate, that 

means, the sampling time period Ts at the receiver to be Tc/2 or less. For simulation, Ts 

is set equal to Tc/4. It has been found that if the delays are less than Tc, the dimension of 

the system increases (that is the new dimension will be Tb/Ts) and the adaptive systems 

show better convergence results. Not only that, even the linear decorrelating one shot 

detector will able to increase the capacity maintaining full near far resistance. Due to 

this reason to model a worse situation in the simulation, the delays are considered to be 

integer multiple of Tc. At the same time, reducing Ts will make the analog-to-digital cir­

cuit more complex and following that digital computation will also increase. This 

should be kept in mind while deciding the Ts for a real system. 
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6.2 Simulation of adaptive systems 

The adaptive systems considered in simulation are the least mean squared 

adaptation, the recursive least squared adaptation and the linearly constraint constant 

modulus algorithm. The last two adaptive methods are considered only to show that 

even their convergence error become prominent when large number of users are present 

in the system which gives rise to near-far problem. Following that all simulation with 

the decision feedback cancellation scheme will use the adapted tap coefficients found 

using the LMS algorithm. 

Here, Figure 6.1, Figure 6.2 and Figure 6.3 show the convergence of error 

using the least mean square algorithm. In Figure 6.1, the total number of users consid­

ered are 30. From the simulation result it is clear that even after 10000 bit of iteration 

the convergence error is +1 -0.15. That means that if one of the user's amplitude drops to 

+/- 0.15 level as compared to that of all other users, it will result in erroneous bit detec­

tion in demodulation. Similarly, the Figure 6.2 and Figure 6.3 show the convergence in 

error term for 10000 bit iteration considering total number of users 40 and 50 respec­

tively. From Figure 6.3 it becomes clear that if the adapted tap-coefficients are used 

without decision feedback cancellation scheme, the bit error rate will be very poor. Thus 

in fact, without decision feedback cancellation, if the adapted tap coefficients are used 

for demodulation, the receiver at base station will suffer from the near-far problem. This 
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Figure 6.1 Convergence on error term using the least mean squared adapta­
tion with 30 users present in the system 
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Figure 6.2 Convergence on error term using the least mean squared adapta­
tion with 40 users present in the system 

will force to keep the power control strictly constant at all time. But the use of near-far 

resistance demodulator allows power control to be more flexible. 

The Figure 6.4 and Figure 6.7 show the convergence of the error term using 

the recursive least squared adaptation and the linearly constraint constant modulus algo­

rithm. The Figure 6.8 shows the convergence in error term when blind LMS adaptation 
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Figure 6.3 Convergence on error term using the least mean squared adapta­
tion with 50 users present in the system 
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Figure 6.4 Convergence on error term using the recursive least squared ad-

is performed as mentioned in chapter 2. The simulation for all these three cases are done 

considering 30 users present in the system. The simulation using RLS algorithm con­

verges completely as the total number of users considered were 30 which is less than 32, 

maximum allowed with perfect MAI cancellation for asynchronous case with L=63. 

Hence convergence for RLS method is repeated with 40 and 50 users in Figure 6.5 and 

6.6. It is clear from simulation that RLS algorithm gives best performance in term of 

speed in convergence. The LMS adaptation with training sequence is better than the 
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Figure 6.5 Convergence on error term using the recursive least squared 
adaptation with 40 users present in the system 

Corwo.rg.mota. of Error for 50 LI sore using FIL.B method 

Figure 6.6 Convergence on error term using the recursive least squared 
adaptation with 50 users present in the system 

other two blind adaptation schemes. In the following section, the bit error rate (BER) 

will be found using adapted coefficients along with the DFC scheme mentioned in 

Chapter 4. 

6.3 Simulation with decision feedback cancellation scheme 

For the least mean-squared adaptation, using the adapted tap-coefficients of 

FIR filter the bit error rates are calculated for 30 users present in the asynchronous DS­

CDMA system. The BER plot is shown in Figure 6.9. The Figure 6.10 and Figure 6.11 
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Figure 6.7 Convergence on error term using the linearly constraint con­
stant modulus algorithm with 30 users present in the system 

Convergence in Error for 30 Users
1.5 

0.5 J 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000No of bit iteration 

Figure 6.8 Convergence on error term using the least mean squared blind 
adaptation with 30 users present in the system 

show the BER rate for 40 users and 50 users present in the system using the LMS 

adapted tap coefficients without using decision feedback cancellation. These simulation 

show that simple LMS adaptive multi-user detector is not immune from near-far problem 

in presence of large number of users in the asynchronous DS-CDMA system. 
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Figure 6.9 The bit error rate for 30 users present in the system using the
 
LMS adapted tap coefficients without DFC
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Figure 6.10 The bit error rate for 40 users present in the system using the 
LMS adapted tap coefficients without DFC 

In chapter 4 it was mentioned that using decision feedback cancellation 

scheme along with the LMS adaptation will regain near-far immunity. This will be true 

for any adaptation process which uses the decision feedback cancellation scheme. To 
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Figure 6.11 The bit error rate for 50 users present in the system using the 
LMS adapted tap coefficients without DFC 

prove that here three cases are considered: 1) for 30 users present in the system forall 

three adaptive processes, 2) for 40 users present in the system and 3) for 50 users 

present in the system. Last two cases are considered with only LMS adapted tap coeffi­

cients. In each case, we compare bit error rate of two users whose magnitude is 0.1 and 

0.01 with all other users' BER while keeping their received magnitude as 1. In other 

words, the received power of two users are 20dB and 40dB below as compared to all 

others received power. 

The simulation for all three cases are repeated with different number of deci­

sion feedback cancellation stages till the near-far resistance is recovered for the users 20 

dB and 40 dB below the normal power level. It is observed that as the number of users is 

increased from 30 to 50, the number of DFC stages which provides near-far resistance 

for the users 20 dB and 40 dB below normal power level for 30 users, are not sufficient 

30 
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BER vs SNR for 30 Users using three adaptive process and 3 DFC stages
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Figure 6.12 The bit error rate for 30 users present in the system using three 
adaptation (LMS, RLS and LCCMA) tap coefficients with 3 stages of DFC 

BER vs SNR for 40 Users using 6 DFC stages
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Figure 6.13 The bit error rate for 40 users present in the system using the LMS 
adapted tap coefficients with 6 stages of DFC 
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BR vs SNR for 50 Users using 9 DFC stages
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Figure 6.14 The bit error rate for 50 users present in the system using the
 
LMS adapted tap coefficients with 9 stages of DFC
 

for the case with 50 users. The reason is simple. As the number of users increases, the 

convergence error in the LMS adaptation also increases. If the error is large, as 

explained in chapter 4, more number of stages required to get the same level of near-far 

resistance. The simulation results are plotted in Figure 6.12, Figure 6.13 and Figure 6.14 

along with the theoretically predicted BER which provides the upper bound of bit error 

rate in Figure 6.15. 

In chapter 4, it was also mentioned that, the noise in the DFC stage does not 

increase indefinitely. This has been proved in the series of plots in Figure 6.16, where 

only the additive white Gaussian noise is fed to the demodulator with nine stages of 

DFC using adapted tap coefficients from the LMS adaptation for 30 users. The Figure 

6.17 shows that even in presence of data, noise variance does not increase beyond a 



101 

Theoretical BER vs 5NR for one user in presence of 30 Users
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Figure 6.15 Theoretically predicted bit error rate for user 1 in presence of 
30 users using the LMS adaptation with 3 stages of DFC 

limit. The histograms in Figure 6.16 and Figure 6.17 show that noise statistically is 

equivalent in both the cases. 

In the following section, simulation results are provided for bit synchroniza­

tion in presence of already existing large number of users. 

6.4 Synchronization 

In this section, the simulation results will prove that if the length of the 

spreading sequence is short, it is of great help in synchronization. 

The series of plots in Figure 6.18 show that by averaging over a bit period, it is 

possible to detect the timing of the new users. Here, for simulation, the new user's data 

20 
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Figure 6.16 Histogram of noise in the residues after stage 1, stage 2, stage 9 
of DFC blocks and of the AWGN noise with only noise of variance 1 as the 

input 
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Noise after DFC stage-9 
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Figure 6.17 Histogram of noise (input noise is of variance 1) after DFC stage 9
 
and that of the detected signal (input signal +1- 1)
 



104 

Averaging over 1 bit 

10 20 30 40 50 60 

Averaging over 15 bits 

1000 

500 

; 

500 
10 20 30 40 50 60 

500 

400 

300 

200 

100 

0 

100 

200 

300 
10 

Averaging over 8 bits 

20 30 40 50 60 

2000 

Averaging over 30 bits 

1500 

1000 

500 

0= 

500 

1000 
10 20 30 40 50 60 

Figure 6.18 With 30 existing users, plots showing the synchronization using 
the method of averaging for a new user 
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Synchrnization using DFC with existing 30 Users
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Figure 6.19 With 30 existing users, plot showing the synchronization using 
the method of DFC for a new user 

bit is kept constant in the preamble of synchronization. Simulation is done for 30 users, 

when 31st is the new user. 

In presence of decision feedback cancellation, the synchronization takes place 

in less time than that required for synchronization using averaging. The option of aver­

aging can also be applied to make decision more robust. For the simulation, the total 

number of users are varied from 30 to 50 at a step of 10 when one user is added as a new 

corner. The synchronization is shown in Figure 6.19, Figure 6.20 and Figure 6.21. 

6.5 Modulator and demodulator for QPSK transmission 

The modulation and demodulation considered in the simulations previously 

mentioned use the Binary Phase Shift Keying (BPSK) method of transmission at base­
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Synchrnization using DFC with existing 40 Users
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Figure 6.20 With 40 existing users, plot showing the synchronization using the
 
method of DFC for a new user
 

Synchmization using DFC with existing 50 Users
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Figure 6.21 With 50 existing users, plot showing the synchronization using the 
method of DFC for a new user 
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Figure 6.22 it /2 QPSK modulator structure 

band. Normally in practice the Quadrature Phase Shift Keying (QPSK) is used instead 

of BPSK, as QPSK has twice the bandwidth efficiency of BPSK. In this section, a mod­

ified QPSK will be proposed for asynchronous DS-CDMA transmission. In it/4-QPSK 

the transmitted signal in inphase (I) and quadrature (Q) takes value out of +1- 1, +/­

0.707 and 0. Hence the received signal in I and Q also has five levels of magnitude. In 

DS-CDMA reverse link, the receiver at base station receives all individually transmitted 

data simultaneously in asynchronous form. It would be advantageous if the individual I 

and Q varies between only +/- single level of magnitude. Thus by taking the absolute of 

I and Q, it will be possible to track the amplitude of the received signal continuously. 

Also, it will help in frequency synchronization. The required modification is done on the 

existing 7t/4-QPSK transmission technique and the modified technique may be called 

7t/2-QPSK transmission. 
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A block diagram of the proposed transmitter is shown in Figure 6.22. The 

input bit stream is partitioned by a serial-to-parallel converter into two parallel data 

streams mik and mQ,k each with a symbol rate equal to the half that of incoming bit rate. 

The kth in-phase and quadrature pulses, Ik and Qk, are produced at the output of the sig­

nal mapping circuit over time kT 5_ t (k + 1)7 and are determined by their previous 

values, IkA and Qk-1, as well as Ok, which itself is function of Ok. The Ok is a function of 

the current input symbols mu( and mQ,k. The Ik and Qk represent rectangular pulses 

over one symbol duration having amplitudes given by Ik = cos (0k) and 

Qk = sin ( Ok) , where, 0k = °k + (1)k with 00=-7t/4. The phase shift Ok is related to
1 

the input symbols mu, and mQ,k according to table 1. The Ik and Qk unlike Tt/4-QPSK 

take only +/- 0.707, thus in demodulator the received amplitude for each user remains 

constant in the absence of fading with change in sign. The in-phase and quadrature bit 

Table 6.1 Carrier Phase shifts corresponding to various input bit pair. 

Phase
 
Information bits shift
 
mi,k and mQ,k Olc
 

1 1 0
 

0 1 n/2
 

0 0 it
 

1 0 -7c/2
 

streams Ik and Qk are then separately modulated by two carriers with radian frequency 

of coc which are in quadrature with one another to produce the final waveform given by, 
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s(t) = /(t)cos(coct) Q(t)sin(coct) (119) 

In reality both Ik and Qk are usually passed through raised cosine roll off pulse shaping 

filters before modulation, in order to reduce the bandwidth occupancy. But in simula­

tion, the raised cosine filters are not considered. 

Due to ease of hardware implementation, the differential detection is 

employed to demodulate the transmitted signal using it/2-QPSK techniques. This 

demodulation procedure as shown in Figure 6.23 does not rely on phase synchroniza­

tion. This demodulation, at first, use the decision feedback cancellation method in base­

band I and Q branches to get the transmitted I and Q component for an individual user. 

If ok = tan-1(QA) is the phase of the carrier due to the kth data bit, the output of the 

DFC stages will be vk and zk in in-phase and quadrature arm of the demodulator. For 

one user, the DFC output in I and Q branch can be expressed as vk=cos(Ok y) and 

zk=sin(Ok y). The y is a phase shift due to noise, propagation and interference. It is 

assumed that the change in y will be much slower than (1)k so essentially it is a constant. 

The two sequences vk and zk are passed through a differential decoder which operates 

on the following rule, 

Xk = VkVk_i+Zek__1 (120) 

Yk = zkvk-1 (121)vkzk-1 

The output of the differential decoder can be expressed as Xk = COS(Ok (1)k_1) 

and Yk = sin (Ok - Ok_i). From table 1 it follows that the constellation of Xk and Yk 

will be on 0 and +/-1 and thus it will be difficult to take decision. To get the decision 
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Zk 

Figure 6.23 ic/2 QPSK demodulator structure 

level at 0, the Xk and Yk signals are passed through an adder and subtractor circuit. The 

the output will be dI = Xk Yk and dQ = Xk + Yk which provides the needed Tc/4 shift. 

The decision block implements the logic, if di ,Q>0 (or di,Q<O), then biQ = 1 (or bJ,Q = 

0). Following that the parallel to serial block is required to convert the I/Q signals into a 

single bit stream. 
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Chapter 7. Summary and Areas for Future Investigation 

It must be clear by this time, when in absence of channel noise and channel 

fading (Rayleigh and time dispersive fading), a total number of users K, are transmitting 

their signals (in bits) modulated by their own signature sequence (here they will be Gold 

sequences), the base station will receive a signal all added together with unknown time 

delays. This unknown time delay of each user is correctly found out by synchronization 

procedure. Now, with the knowledge of signature sequence and time delay for each user 

in the base station, one needs to calculate a coefficient sequence corresponding to 

desired user's signature sequence such that the inner product of the received signal and 

the coefficients with right bit starting point will result into the desired signal amplitude 

along with sign and with no multiple access interference (MM) term present in the inner 

product term. But, if the total number of users in asynchronous transmission become 

larger than 32 when the length of chip sequence considered is 63 for a bit period, the 

total annihilation of MAI term in the inner product is not possible which calls for a tech­

nique called decision feedback cancellation. The DFC scheme allows the MAI term to 

become as small as possible in exchange for added hardware complexity of adding mul­

tiple number of DFC stages even if the number of users is more than 32. 

As the addition of individual users signal produces the resultant signal at base 

station, the received signal retains the linear characteristics. That means, by solving sim­

ple linear equations, one can solve to find the desired coefficients, which produces per­

fect near-far immunity as long as total number of users is less that 32. Also, as it is a 

linear system, the least mean square recursive solution produces a solution, which pro­
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vides the best bit error rate characteristics in the linear sense. Here, a nonlinearly opti­

mized system is also considered which is called linearly constraint constant modulus 

algorithm and it is found that it provides the best bit error rate characteristics in simula­

tion. 

One more new concept is proposed here, that is amplitude estimation instead 

of equalization. If the adaptation takes place on the received signal, it will result into 

equalization. Instead of that if the adaptation takes place on the generated received sig­

nal created on the basis of delay time and signature sequence of all users, it will result 

into amplitude estimation. In the process of equalization, the adapted tap-coefficients 

will depend on the channel noise and the channel fading. But the amplitude estimation 

does not depend on channel noise and fading. The amplitude estimation correctly pro­

duces the amplitude for each user at a delay of chip time period (or by the sampled time 

period of the chip). Thus, for each user, for a transmitted bit the base station will form a 

time dispersed collection of amplitudes, and the strongest among those estimations will 

be chosen for decoding. Also, unlike equalization, for amplitude estimation, the adapta­

tion process has to converge only once until an existing user leaves or a new user joins 

the existing users. But, whatever method is used for finding out the tap coefficients, 

decision feedback cancellation scheme can always be used to increase the total number 

of users in the system. 

Simulation results indicate that among three adaptive methods (the least mean 

squared adaptation, the recursive least squared adaptation and the linearly constraint 

constant modulus algorithm) the LCCMA gives the best bit error rate. It is also found 
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that if the criterion to judge the performance is to get minimum number of decision 

feedback stages, then the RLS algorithm fares best as it produces the minimum conver­

gence error for a fixed number of users present in the system. If the criterion is to have 

minimum hardware complexity, then the LMS adaptation performs better than any other 

algorithm. The convergence in error for all three adaptive methods shows the necessity 

to have decision feedback cancellation in presence of large number of users in the sys­

tem. The theory and simulation produce almost similar bit error rate for single user in 

presence of 30 users in the system. 

Simulation results also point out that the noise in the DFC stages does not 

increase beyond a limit as it has been explained in the theory. Hence addition of several 

number of DFC stages improves the near-far resistance of the demodulator. 

Simulations on synchronization show that usage of the proposed demodulator 

improves the bit-timing synchronization. Also the /c/2 QPSK demodulator improves the 

chance of frequency synchronization using Costas loop [1]. 

The theoretical results shows that the all three adaptive methods along with 

DFC stages not only provides near-far resistance but their overall bit error rate perfor­

mances are very near to the performance of BPSK bit error rate. 

The further study in this area can be divided into six categories: 

1. Increase in the number of users by usage of longer chip sequence covering more than 

one transmitted bit and consideration of time dispersive multi-path fading. 

2. To find the steady state analysis of LCCM algorithm and search for the best adaptive 
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algorithm in terms of hardware complexity, bit error rate, convergence in error and ease 

in finding the step size if it is required for the algorithm to be used. 

3. To find whether adaptive methods using decision feedback (DF) can increase the 

capacity. 

4. To obtain simulation result with the raised cosine filter and rr./2 or ir/4 QPSK modula­

tion and demodulation with different sampling rate at the demodulator to find which 

will provide better performance. 

5. To include error correcting code in the simulation and to find the best error correcting 

code that will give the best bit error rate performance for the proposed demodulator. 

6. To obtain better chip sequence which produces better results in terms of error in con­

vergence and bit-timing synchronization. 
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