27 research outputs found

    Genetic Adaptation of Coxsackievirus B1 during Persistent Infection in Pancreatic Cells

    Get PDF
    Coxsackie B (CVB) viruses have been associated with type 1 diabetes. We have recently observed that CVB1 was linked to the initiation of the autoimmune process leading to type 1 diabetes in Finnish children. Viral persistency in the pancreas is currently considered as one possible mechanism. In the current study persistent infection was established in pancreatic ductal and beta cell lines (PANC-1 and 1.1B4) using four different CVB1 strains, including the prototype strain and three clinical isolates. We sequenced 5′ untranslated region (UTR) and regions coding for structural and non-structural proteins and the second single open reading frame (ORF) protein of all persisting CVB1 strains using next generation sequencing to identify mutations that are common for all of these strains. One mutation, K257R in VP1, was found from all persisting CVB1 strains. The mutations were mainly accumulated in viral structural proteins, especially at BC, DE, EF loops and C-terminus of viral capsid protein 1 (VP1), the puff region of VP2, the knob region of VP3 and infection-enhancing epitope of VP4. This showed that the capsid region of the viruses sustains various changes during persistency some of which could be hallmark(s) of persistency

    Efficacy and safety of chloroquine and hydroxychloroquine for COVID-19 : A comprehensive evidence synthesis of clinical, animal, and in vitro studies

    Get PDF
    This study was financially supported by the Deputy of Research and Technology of Iran University of Medical Sciences, Tehran, Iran (Grant no. 17668).Peer reviewedPublisher PD

    Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect

    Get PDF
    Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously, we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including nonhuman primates. Before initiating clinical trials with this type of vaccine, it was also important to address 1) whether the vaccine itself induces adverse immune reactions, including accelerating diabetes onset in a diabetes-prone host, and 2) whether the vaccine can prevent CVB-induced diabetes in a well-established disease model. Here, we present results from studies in which female NOD mice were left untreated, mock-vaccinated, or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus-neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model.acceptedVersionPeer reviewe

    Enhancing and neutralizing anti-coxsackievirus activities in serum samples from patients prior to development of type 1 diabetes

    Get PDF
    Abstract Studies in prospective cohorts have suggested that enterovirus infections are associated with the appearance of islet autoantibodies that precede later appearance of type 1 diabetes (T1D). It was shown that in addition to an antibody-mediated anti-coxsackievirus (CV)-B neutralizing activity of serum from patients with T1D, there was also enhancing anti-CV-B activity in vitro. In this study the patterns of enhancing and neutralizing anti-CV activities were analyzed from consecutive serum samples collected from children who were followed from birth until they developed T1D in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and compared to those in non-diabetic control children. The titers of serum neutralizing activity were analyzed against those CVs which were detected in the stools in these children (CV-B3, CV-B5 or CV-A4) using plaque assay. The enhancing activity of these serum samples was analysed by measuring interferon-alpha (INF-α) production in cultures of peripheral blood mononuclear cells (PBMC) inoculated with a mixture of these viruses and diluted serum. A sustained anti-CV enhancing activity was observed in consecutive serum samples in patients with T1D. The pattern of responses differed between children who developed T1D and control children. In patients, the anti-CV enhancing activity was predominant or even exclusive over the neutralizing activity, whereas in controls the enhancing and neutralizing activities were more balanced or the neutralizing activity was largely predominant. In conclusion, evaluating the anti-enterovirus neutralizing and enhancing activity of serum samples can be useful to investigate further the relationship between enteroviruses and the development of T1D. This article is protected by copyright. All rights reserved.Peer reviewe

    Enhancing and neutralizing anti-coxsackievirus activities in serum samples from patients prior to development of type 1 diabetes

    Get PDF
    Abstract Studies in prospective cohorts have suggested that enterovirus infections are associated with the appearance of islet autoantibodies that precede later appearance of type 1 diabetes (T1D). It was shown that in addition to an antibody-mediated anti-coxsackievirus (CV)-B neutralizing activity of serum from patients with T1D, there was also enhancing anti-CV-B activity in vitro. In this study the patterns of enhancing and neutralizing anti-CV activities were analyzed from consecutive serum samples collected from children who were followed from birth until they developed T1D in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and compared to those in non-diabetic control children. The titers of serum neutralizing activity were analyzed against those CVs which were detected in the stools in these children (CV-B3, CV-B5 or CV-A4) using plaque assay. The enhancing activity of these serum samples was analysed by measuring interferon-alpha (INF-α) production in cultures of peripheral blood mononuclear cells (PBMC) inoculated with a mixture of these viruses and diluted serum. A sustained anti-CV enhancing activity was observed in consecutive serum samples in patients with T1D. The pattern of responses differed between children who developed T1D and control children. In patients, the anti-CV enhancing activity was predominant or even exclusive over the neutralizing activity, whereas in controls the enhancing and neutralizing activities were more balanced or the neutralizing activity was largely predominant. In conclusion, evaluating the anti-enterovirus neutralizing and enhancing activity of serum samples can be useful to investigate further the relationship between enteroviruses and the development of T1D. This article is protected by copyright. All rights reserved.Peer reviewe

    Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes

    Get PDF
    Aims/hypothesis Islet autoimmunity usually starts with the appearance of autoantibodies against either insulin (IAA) or GAD65 (GADA). This categorises children with preclinical type 1 diabetes into two immune phenotypes, which differ in their genetic background and may have different aetiology. The aim was to study whether Coxsackievirus group B (CVB) infections, which have been linked to the initiation of islet autoimmunity, are associated with either of these two phenotypes in children with HLA-conferred susceptibility to type 1 diabetes. Methods All samples were from children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Individuals are recruited to the DIPP study from the general population of new-born infants who carry defined HLA genotypes associated with susceptibility to type 1 diabetes. Our study cohort included 91 children who developed IAA and 78 children who developed GADA as their first appearing single autoantibody and remained persistently seropositive for islet autoantibodies, along with 181 and 151 individually matched autoantibody negative control children, respectively. Seroconversion to positivity for neutralising antibodies was detected as the surrogate marker of CVB infections in serial follow-up serum samples collected before and at the appearance of islet autoantibodies in each individual. Results CVB1 infections were associated with the appearance of IAA as the first autoantibody (OR 2.4 [95% CI 1.4, 4.2], corrected p = 0.018). CVB5 infection also tended to be associated with the appearance of IAA, however, this did not reach statistical significance (OR 2.3, [0.7, 7.5], p = 0.163); no other CVB types were associated with increased risk of IAA. Children who had signs of a CVB1 infection either alone or prior to infections by other CVBs were at the highest risk for developing IAA (OR 5.3 [95% CI 2.4, 11.7], p <0.001). None of the CVBs were associated with the appearance of GADA. Conclusions/interpretation CVB1 infections may contribute to the initiation of islet autoimmunity being particularly important in the insulin-driven autoimmune process.Peer reviewe

    Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells.

    Get PDF
    Enteroviruses, particularly the group B coxsackieviruses (CVBs), have been associated with the development of type 1 diabetes. Several CVB serotypes establish chronic infections in human cells in vivo and in vitro. However, the mechanisms leading to enterovirus persistency and, possibly, beta cell autoimmunity are not fully understood. We established a carrier-state-type persistent infection model in human pancreatic cell line PANC-1 using two distinct CVB1 strains and profiled the infection-induced changes in cellular transcriptome. In the current study, we observed clear changes in the gene expression of factors associated with the pancreatic microenvironment, the secretory pathway, and lysosomal biogenesis during persistent CVB1 infections. Moreover, we found that the antiviral response pathways were activated differently by the two CVB1 strains. Overall, our study reveals extensive transcriptional responses in persistently CVB1-infected pancreatic cells with strong opposite but also common changes between the two strains. </p
    corecore