366 research outputs found

    Comparison of laboratory and daily-life gait speed assessment during on and off states in parkinson’s disease

    Get PDF
    Accurate assessment of Parkinson’s disease (PD) ON and OFF states in the usual environment is essential for tailoring optimal treatments. Wearables facilitate measurements of gait in novel and unsupervised environments; however, differences between unsupervised and in-laboratory measures have been reported in PD. We aimed to investigate whether unsupervised gait speed discriminates medication states and which supervised tests most accurately represent home perfor-mance. In-lab gait speeds from different gait tasks were compared to home speeds of 27 PD patients at ON and OFF states using inertial sensors. Daily gait speed distribution was expressed in percentiles and walking bout (WB) length. Gait speeds differentiated ON and OFF states in the lab and the home. When comparing lab with home performance, ON assessments in the lab showed moderate-to-high correlations with faster gait speeds in unsupervised environment (r = 0.69; p < 0.001), associated with long WB. OFF gait assessments in the lab showed moderate correlation values with slow gait speeds during OFF state at home (r = 0.56; p = 0.004), associated with short WB. In-lab and daily assessments of gait speed with wearables capture additional integrative aspects of PD, reflecting different aspects of mobility. Unsupervised assessment using wearables adds complementary information to the clinical assessment of motor fluctuations in PD.This research was funded by Keep Control from the EU’s Horizon 2020 (H2020) research and innovation program under the Marie Sklodowska-Curie (MSCA-ITN-ETN), grant number 721577. No other financial support and funding for the preceding twelve months are applied

    Robustness of In-Laboratory and Daily-Life Gait Speed Measures over One Year in High Functioning 61- To 70-Year-Old Adults

    Get PDF
    Introduction: Gait speed is a simple and safe measure with strong predictive value for negative health outcomes in clinical practice, yet in-laboratory gait speed seems not representative for daily-life gait speed. This study aimed to investigate the interrelation between and robustness of in-laboratory and daily-life gait speed measures over 12 months in 61- to 70-year-old adults. Methods: Gait speed was assessed in laboratory through standardized stopwatch tests and in daily life by 7 days of trunk accelerometry in the PreventIT cohort, at baseline, and after 6 and 12 months. The interrelation was investigated using Pearson's correlations between gait speed measures at each time point. For robustness, changes over time and variance components were assessed by ANOVA and measurement agreement over time by Bland-Altman analyses. Results: Included were 189 participants (median age 67 years [interquartile range: 64-68], 52.2% females). In-laboratory and daily-life gait speed measures showed low correlations (Pearson's r = 0.045-0.455) at each time point. Moreover, both in-laboratory and daily-life gait speed measures appeared robust over time, with comparable and smaller within-subject than between-subject variance (range 0.001-0.095 m/s and 0.032-0.397 m/s, respectively) and minimal differences between measurements over time (Bland-Altman) with wide limits of agreement (standard deviation of mean difference range: 0.12-0.34 m/s). Discussion/Conclusion: In-laboratory and daily-life gait speed measures show robust assessments of gait speed over 12 months and are distinct constructs in this population of high-functioning adults. This suggests that (a combination of) both measures may have added value in predicting health outcomes

    Technology Innovation Enabling Falls Risk Assessment in a Community Setting

    Get PDF
    Approximately one in three people over the age of 65 will fall each year, resulting in significant financial, physical, and emotional cost on the individual, their family, and society. Currently, falls are managed using on-body sensors and alarm pendants to notify others when a falls event occurs. However these technologies do not prevent a fall from occurring. There is now a growing focus on falls risk assessment and preventative interventions. Falls risk is currently assessed in a clinical setting by expert physiotherapists, geriatricians, or occupational therapists following the occurrence of an injurious fall. As the population ages, this reactive model of care will become increasingly unsatisfactory, and a proactive community-based prevention strategy will be required. Recent advances in technology can support this new model of care by enabling community-based practitioners to perform tests that previously required expensive technology or expert interpretation. Gait and balance impairment is one of the most common risk factors for falls. This paper reviews the current technical and non-technical gait and balance assessments, discusses how low-cost technology can be applied to objectively administer and interpret these tests in the community, and reports on recent research where body-worn sensors have been utilized. It also discusses the barriers to adoption in the community and proposes ethnographic research as a method to investigate solutions to these barriers

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Physical activity monitoring in obese people in the real life environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a major problem especially in western countries and several studies underline the importance of physical activity to enhance diet. Currently there is increasing interest in instruments for monitoring daily physical activity. The purpose of this pilot study was to appraise the qualitative and quantitative differences in physical activities and gait analysis parameters in control and obese subjects by means of an innovative tool for the monitoring of physical activity.</p> <p>Methods</p> <p>Twenty-six obese patients, 16 women and 10 men, aged 22 to 69 years with Body Mass Index (BMI) between 30 and 51.4 kg/m<sup>2</sup>, were compared with 15 control subjects, 4 men and 11 women, aged 24 to 69 with BMI between 18 and 25 kg/m<sup>2 </sup>during daily physical activities. The IDEEA device (Minisun, Fresno, CA), based on a wearable system of biaxial accelerometers and able to continuously record the physical activities and energy expenditure of a subject in time was used. Time spent in different physical activities such as standing, sitting, walking, lying, reclining, stepping, energy expenditure and gait parameters (velocity, stance duration, etc) were measured during a 24-hours period.</p> <p>Results</p> <p>A trend toward a reduced number of steps was present, associated to reduced speed, reduced cadence and reduced rate of single and double limb support (SLS/DLS). Moreover, obese people spent significant less time stepping, less time lying and more time in a sitting or reclined position during the night. The energy expenditure during a 24-hours period was higher in the obese compared to controls.</p> <p>Conclusions</p> <p>The study provided objective parameters to differentiate the daily motor activity of obese subjects with respect to controls, even a larger population is required to confirm these findings. The device used can be of support in programming educational activities for life style modification in obese people as well as for monitoring the results of various kinds of intervention in these patients concerning weight and physical performance.</p
    corecore