Conf-931156 -- 14

DOE/MC/28176-94/C0311

Examples from the Atlas of Major Applachian Gas Plays

Authors:

D.G. Patchen K. Aminian K.L. Avary M.T. Baranoski K. Flaherty B.C. Nuttall R.A. Smosna

Contractor:

Appalachian Oil and Natural Gas Research Consortium West Virginia University P.O. Box 6064 Morgantown, WV 26506-6064

- Contract Number: DE-FC21-91MC28176
- Conference Title: Fuels Technology Contractors Review Meeting

Conference Location: Morgantown, West Virginia

Conference Dates: November 16-18, 1993

Conference Sponsor: U.S. Department of Energy, Morgantown Energy Technology Center

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.

Examples from the Atlas of Major Appalachian Gas Plays

CONTRACT INFORMATION

Contract Number	DE-FC21-91MC28176								
Contractor	Appalachian Oil and Natural Gas Research Consortium P.O. Box 6064 Morgantown, WV 26506-6064 (304) 293-2867								
Contractor Project Manager	Douglas G. Patchen								
Principal Investigators	Khashayar Aminian Katharine Lee Avary Mark T. Baranoski Kathy Flaherty Brandon C. Nuttall Richard A. Smosna								
METC Project Manager	Harold D. Shoemaker								
Period of Performance	October 1, 1991 to September 30, 1994								

Schedule and Milestones

FY94 Program Schedule

Data collection & compilation	S	0	N	D	J	F	M ►	Α	М	J	J	Α	
Atlas preparation	 								· • .			►	
Atlas technology transfer	 		<u></u>									►	

OBJECTIVES

The objectives of this contract are to produce a printed atlas of major Appalachian basin gas plays and to compile a machine-readable database of reservoir data.

BACKGROUND INFORMATION

In their "Gas Research Program Implementation Plan" issued in April 1990, the U.S. Department of Energy identified and discussed research activities for natural gas resource assessment and recovery with near-, mid-, and long-term objectives and described how to implement these activities. In the near-term, five research topics were identified, including "Gas Atlases Compilation/Reservoir Classification," and "Database Consolidation and Maintenance." DOE envisioned a close linkage between these two activities with data flowing between both as they were performed concurrently. However, DOE noted that it may be essential to develop an appropriate reservoir classification scheme that divides reservoirs in a region into groups with geological and common engineering characteristics before consolidating databases or producing the gas atlases. They further stated that this combination of activities (classification scheme, database consolidation, gas atlases) "... clearly represents a major effort...", one that will require the assistance of "... universities, industry, and state and federal geological surveys." The report goes on to state that the three activities are " an essential starting point for the entire gas program ... " to guide further research and industry development and to expose gaps in data currently available for those pursuits.

The Appalachian Oil and Natural Gas

Research Consortium (AONGRC or the Consortium), a partnership of the state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and the departments of Geology and Petroleum and Natural Gas Engineering at West Virginia University (WVU), agrees with the need to classify gas reservoirs by geologic plays. During meetings with industry representatives, the small independents in the basin emphasized that one of their prime needs was to place each producing reservoir within a stratigraphic framework subdivided by environment of deposition to enable them to develop exploration and development strategies.

The Appalachian basin is a broad geologic province that spans several states. There is no central regulatory authority, similar to the Texas Railroad Commission. acting as a source of detailed reservoir data. The general absence of major oil and gas exploration companies in the and development of the basin has resulted in many small independent operators with limited geologic staffs generating internal reports on prospective areas for drilling; these reports are often not published. Most private vendors of oil and gas well and reservoir information are generally lacking in historical data typical of mature provinces. Finally, significant exploration and development occurred prior to the establishment of statewide regulatory agencies.

PROJECT DESCRIPTION

Six tasks were identified to accomplish the objectives. Task 1, Defining Gas Plays, resulted in the identification of 31 plays. Task 2, Data Collection and Compilation, is on going, as play descriptions are being written, tables and illustrations constructed, and the atlas database designed. Task 3, Atlas Preparation, is in progress at present. Task 4, Atlas Review, is following Task 3 closely, as an essential part of the play description preparation. Task 5, printing the atlas, will occur during the final months Task 6, Technology of the contract. Transfer, has been on-going throughout the contract, with presentations by project personnel at the 24th Annual Appalachian Petroleum Geology Symposium, the 1993 Eastern Section, American Association of Petroleum Geologists Annual Meeting, METC Contractors Review Meetings, and the Kentucky Oil and Gas Association 1993 Summer Meeting. The 25th Annual Appalachian Petroleum Geology Symposium, to be held in March, 1994 in Morgantown, WV, will be devoted to presentations on all of the Appalachian basin gas plays being included in the Gas Atlas.

RESULTS

The text for eight of the 31 play descriptions has been completed, drafting of illustrations for these plays is underway (or complete for some plays), and the review process is ongoing. The review process has been set up to ensure consistency, accuracy, and completeness for all play descriptions included in the atlas. Following internal reviews by three project members, the text and illustrations are sent to three external reviewers and to the METC project manager. After all external and METC reviewer comments have been examined by the author(s), the text and illustrations are reviewed by the technical editor. Upon approval of the text and illustrations by the technical editor, the production editor then prepares the text and illustrations for publication.

Eleven additional plays are scheduled to

be completed by the end of November, 1993. The remaining 12 will be completed in early February, 1994.

Table 1 is the standard outline being used by all authors for the play descriptions. The use of the outline will enable the reader to quickly and easily find the same information for comparison of different plays. Table 2 lists the typical required and optional illustrations for each play. Table 3 is an example of the "Reservoir and Production Data of Major Pools Included in Play XX" table which will be included with each play description. A maximum of 24 fields or pools in each play will be published in the atlas. Data on all the fields and pools included in each play will be contained in the database.

Figure 1 is an example (the Lower Silurian Tuscarora Sandstone Fractured Anticline play) of the map showing the location of the fields and pools included in a play. This figure is designed to show the relative extent of each play within the basin. A correlation chart (Figure 2, for the Cambrian-Ordovician Knox Group unconformity play) serves to locate the play stratigraphically. Correlation charts may show both formal stratigraphic and informal drillers' terms. Isopach (Figure 3) and structural contour (Figure 4) maps of a key field (Oneida Consolidated field, Clay County, Kentucky, Lower Devonian- Upper Silurian unconformity play) are used to illustrate the relationship of structure and thickness to gas production. Type logs for key fields (Figure 5, east central Kentucky, Lower Devonian-Upper Silurian unconformity play) show log characteristics of the reservoir and surrounding units. Stratigraphic cross sections (Figure 6, the Cambrian-Ordovician Knox Group unconformity play) are used to illustrate regional stratigraphic relationships of the productive zones and overlying and underlying units.

FUTURE WORK

In the remaining year of the contract, all play descriptions and illustrations will be finalized and prepared for printing. The database will be compiled and formatted for delivery.

REFERENCES

Dolly, E.D., and Busch, D.A., 1972, Stratigraphic,structural, and geomorphic factors controlling oil accumulation in Upper Cambrian strata of central Ohio: American Association of Petroleum Geologists Bulletin, v. 56, no. 12, p. 2335-2369.

Janssens, A., 1973, Stratigraphy of the Cambrian and Lower Ordovician rocks in Ohio: Ohio Division of Geological Survey Bulletin 64, 197 p.

Milici, R.C., and de Witt, Wallace, Jr., 1988, The Appalachian Basin, *in* Sloss, L. D., ed., Sedimentary cover--North American Craton:U.S.: Geological Society of America, The Geology of North America, v. D-2, p. 427-469.

Patchen, D.G., Avary, K.L., and Erwin, R.B., 1985, Correlation of Stratigraphic Units of North America (COSUNA) project-Northern Appalachian Region: American Association of Petroleum Geologists, chart, 1 sheet.

Riley, R.A., Baranoski, M.T., Carlton, R.W., Harper,J.A., and Laughrey, C.D., 1993, Measuring and predicting reservoir heterogeneity in complex deposystems: the Late Cambrian Rose Run sandstone of eastern Ohio and western Pennsylvania: Final report, U.S. Department of Energy, contract no. DE-AC22-90BC14657, 220 p.

Table 1. Outline for play description

TITLE (play number, name, and author[s])

Location

Include a brief description of identifying features of the play if appropriate

Production History

Discovery, development, cumulative production

Stratigraphy

Producing formation(s), member(s), sand(s), zone(s), etc. Age of producing unit(s) Lateral equivalents of producing unit(s) Environment(s) of deposition of producing unit(s)

Structure

Reservoir

Type of trap(s) Source rock (age, lithology, maturity) Migration of fluids Depth to pay--range and average Thickness--range and average Rock pressure--range and average Initial open flow--range and average Final open flow--range and average Heterogeneity (porosity types, porosity--range and average, permeability--range and average, type of reservoir [single layer, multi-layer], drive mechanism, completion strategies, production [per well--range and average, per acre--range and average], decline curves [typical well(s), typical pool(s)])

Description of Key Fields

(use field name to begin each description)

Resources and Reserves

Future Trends

References Cited

Table 2. List of play illustrations and tables

Тур	ical field illustrations required for each play:
	Isopach or structure map
	Cross section (either structural or stratigraphic)
	Type log
	Pay or porosity map
Oth	er illustrations:
	Pool map on basin base map
	Stratigraphic column (both formal and drillers' terms)
	Correlation chart
	ys defined by depositional systems or environments may include sketches or models of se systems. Other possible illustrations include types of traps, thermal maturity, and decline
cur	
cur	/e.
cur "Re eac	Tables Tables reservoir and Production Data of Major Pools Included in Play XX" will be included with h play description. For some plays, other tables may be appropriate.
cur "Re eac	Tables reservoir and Production Data of Major Pools Included in Play XX" will be included with h play description. For some plays, other tables may be appropriate. er tables which may have to be included:
cur "Re eac	Tables Tables reservoir and Production Data of Major Pools Included in Play XX" will be included with h play description. For some plays, other tables may be appropriate.

Fiel		Les Chepal		Oneida	Mine	Reccoon	Trixie				Martow
Pc	NOCL HAMIER		Springs Con	Cons.	Back	Muntain	Cons.	<u>Baffalo</u>	Woming	Lakesbore.	Cons
		1601142368	1600320368				1602002368	310029	310121	310013	3401170974
		1975	1984	1985	1984	1955	1983			1949	1959
		1750	3450		4600		3720				3500
<	AGE OF FREETWORK	L.Ord.	L.Ord.	L.Ord.	L.Ord.	L.Ord.	L.Ord.	U.Camb.	U.Camb.	U.Camb.	U.Camb.
DATA	FORMARCH	Knox	Knox	Knox	BICHN	Клох	BKMN	TIRA	TIRA	TIRA	Клож
2	MCBLONG RESERVOIT	Knox	BIQEN	BKHN	BICHIN	Клох	BKMN	THRA	THRA	THRA	CPRG
RESERVOIR	URICLOBY	dol.	dol.	dol.	dol.	dol.	do).	88.	88.	58.	dol.
₹ (Strat.	Strat., Struc.	Strat., Struc.	Struc.	Struc.	Struc.				Strat.
- W [SECONDUCT INVESTIGATION	Sh.mar.	Sh.mer.	Sh.mar,	Sh.mer.	Sh.mer.	Sh.mer.				Sh.mer.
2	TRECOVERY WELL IP place	150	20	700	146	488	90			2200	265
<u>u</u>	DIANE INSCRIMENT	g.e.	g.e.	g.e.	g.e.	g.e.	g.e.		1		5.8V.
BASIC	NO. PRODUCING WILLIS	36	24	11	4	10	43	0	6	0	340
•	HO ABARDONED WELLS	5	3	0	0	0	2	2	0	1	241
	AFIEA (sevengel)	3369	1873	725	350	2100	700				9800
		Knox	Knox	Knox	Rome	Knox	Кпох				MTSN
	ENFECTED HE REPODENTITY								1	1	
	DUE TO:	fra.,dia	fra.	fra.	fra.	dia.fra	fradia		<u> </u>	<u> </u>	dia.
		6		42	32	17	37				14
	MEMOR CONFLETION TROUMER (B.)										18
	MENAGE POROBIT-LOG (N)	9	8	9	7	9	9				9
	MININAL POTOSITY-LOS (N)	4	4	4	. 1	4	4		ļ		4
8	MANNA M POPDETY-LOB (%)	12	16	15	16	15	17				18
14	ND. GATA POINTS	4	10	9	4	6_	11				30
RESERVOIR PARAMETERS	MERINGE PORCEITY-COME (%)					8					8
₹[MININA POPULITY-COPE (%)				1	5					3
2	HUMAN POPOSITY-CORE (14)					13					16
	NO. GATA POINTS					2			1		6
ē	POPODITY FEET	54	264	378	224	1 53	330		1		126
E						5.8					7
ន្ល	TELATINE PERMEABILITY INITY						<u> </u>	1	1		1
E			85	93	92	83	82				98
						1					1280
	PRODUCING SHERVAL SEPTICE (F)	1/00-	3170-	1100	1450	800	3540-				3000- 4200
		1498-	3179-	3540-	4220-	2990- 3560	3540- 3860 4207				4200
			^{350/} 1987		^{235/} 1986	^{245/} 1991	420(989			L	⁶⁰⁰ (992
	Filer (Allen)		.06	.06	.06	.06	.06		ļ		.04
ERTIES	GAB CITAMOTY LINES					.698				<u> </u>	.62
9Ē	GAB BARJIARDI (M)		59	33	56	74	47				63
25	WINDOWS AND INTERNE		41	67	44	26	53				25
											Y
E	ABBOCIATED OR HOMBBOCIATED	N.	Α.	۸.	N.	۸.	۸.				A.
	Buildy		T	1		1076	1095				1062
	BIANUS (predating, abardered,				в	P.			1		Ρ.
	THODUCTION VEATE	P	P	<u> </u>	P	- <u>r</u> .	P		1		19591992
₹							·				
NO.	Greater Gas INFLACE SAS		12 600 000	1 mm	2 000 000	10000	1		+		35,000,00
õ			12,600,000	4,200,000	2,500,000	10,000,000	4,700,000				52.00.00
E									-	+	42,000,00
VOLUMETRIC DAI	PERSONAL GALE IN FLACE	L				L				1	17.00.00
	Induced Constantings			·				<u> </u>			7.000.00
	MAR CITANU CAN BRING						100			2200	390
	FINAL CITATION (MINA)	131	202	879	346	207	693			80	355
	NECONORY FACILITY	1	1				1				· 80

Table 3. Reservoir and production data of major fields and poolsin Cambrian-Ordovician Knox unconformity play

ABBREVIATION KEY

AUGUST 25, 1993

MAY MAY MAN MAN MUTLA IN GASE RUISTRYINE DATA UCamb. Upper Cambrian LUCd. - Lower Ordowicen LUCd. - Lower Ordowicen RMN - Beekmantown CPRG - Copper Ridge SKMN - Beekmantown CPRG - Copper Ridge MISN - Mount Simon LTFL - Little Pails PC - Precambrian RSAN LTFL THRA

10. dal. - dolomite sist. - siltstone ss. - sandstone sh.mar - shallow ma strat. - stratigraphio e.g. - solution ges w. - water g.e. - ges expansio fra. - fractures den. - diegensis depo.--dieposition N. Non-Ase P. - Producing A. - Abandone 8. - Storage E. - Enhanced

recovery Cons. - Consolidated

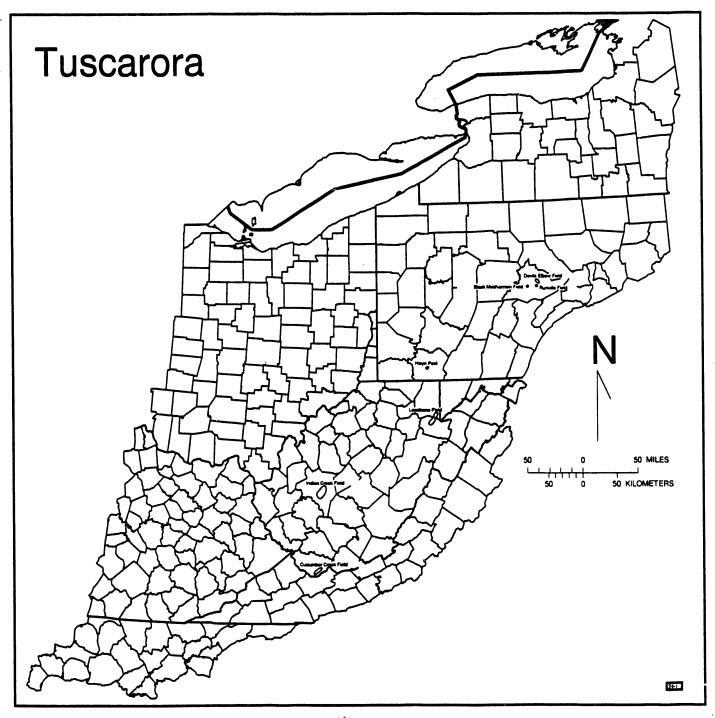


Figure 1. Map of the Appalachian Basin showing the location and extent of the Lower Silurian Tuscarora Sandstone fractured anticline fields and pools.

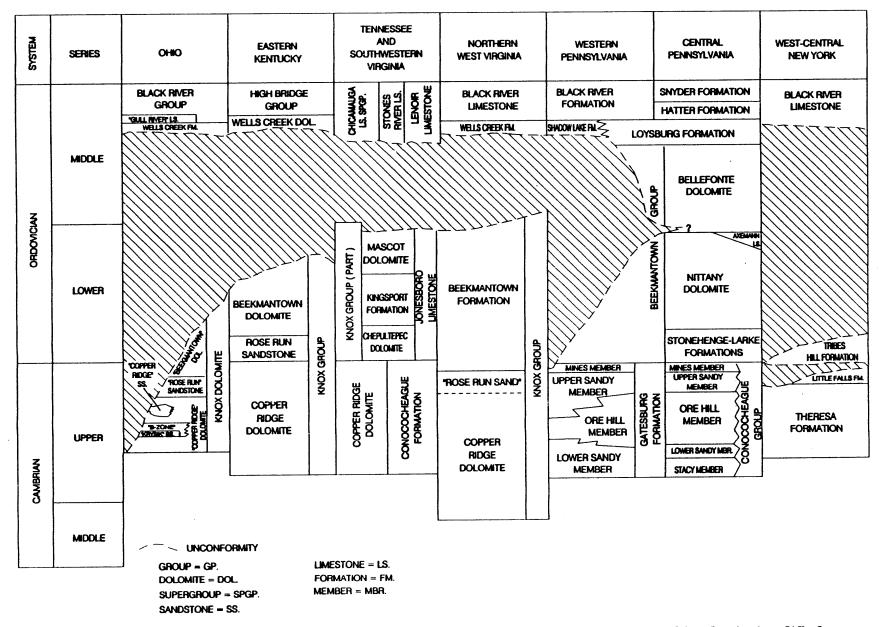


Figure 2. Correlation chart for part of the Ordovician and Cambrian of the Appalachian basin (modified from Janssens, 1973; Patchen and others, 1985; Milici and de Witt, 1988; and Riley and others, 1993), Cambrian-Ordovician Knox Group unconformity play

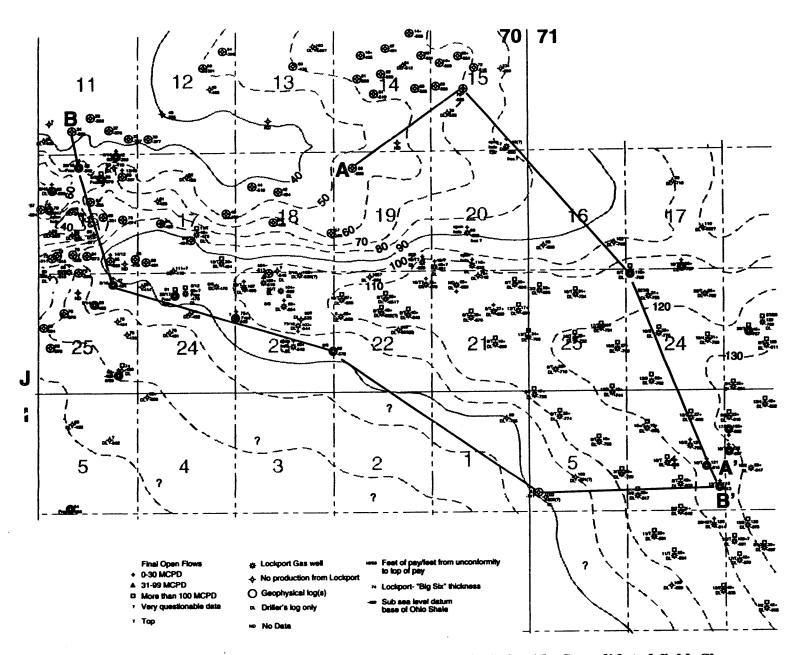


Figure 3. Isopach map of the Lockport Dolomite/"Big Six", Oneida Consolidated field, Clay County, Kentucky, Lower Devonian-Upper Silurian unconformity play

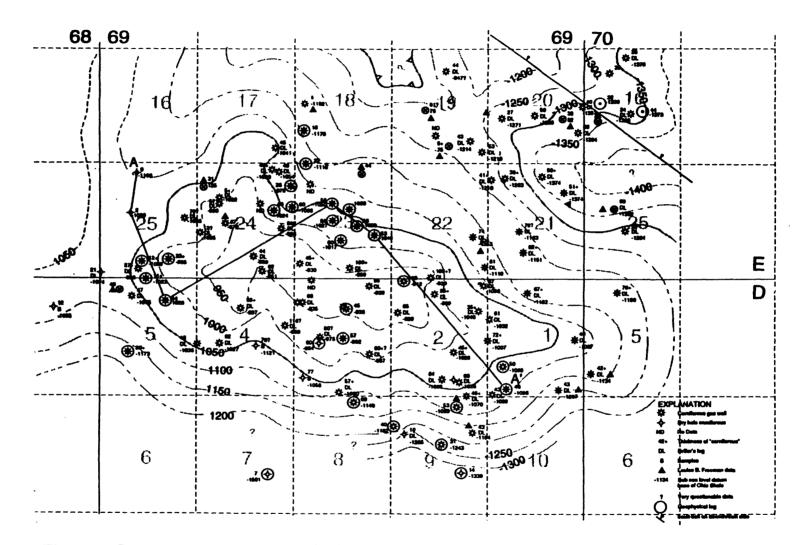


Figure 4. Structure contour map on the base of the Devonian Ohio Shale, Oneida Consolidated field, Clay County, Kentucky, Lower Devonian-Upper Silurian unconformity play

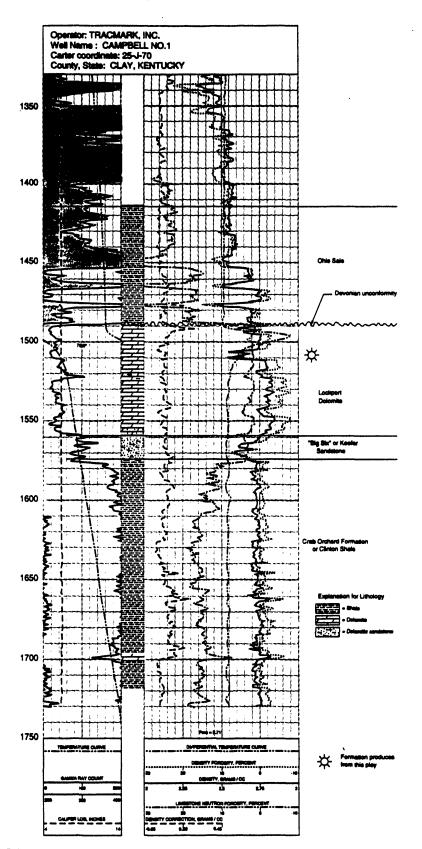


Figure 5. Type log for east central Kentucky (Clay County), Lower Devonian-Upper Silurian unconformity play

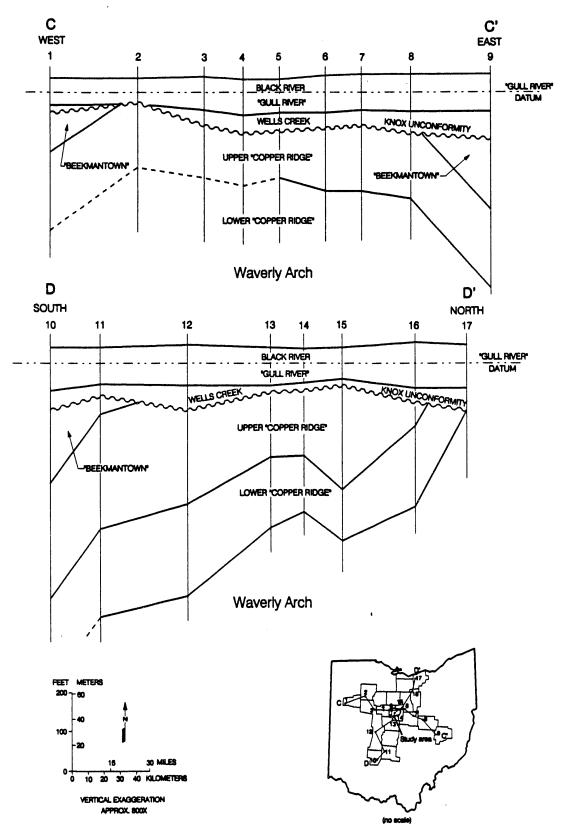
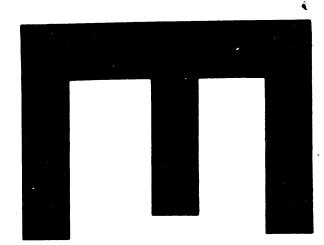



Figure 6. Regional cross sections of the Middle Ordovician and Upper Cambrian in central Ohio demonstrating the Knox unconformity and Waverly Arch (modified from Dolly and Busch, 1972), Cambrian-Ordovician Knox unconformity play

-

