1,405 research outputs found

    Bound entanglement in the XY model

    Full text link
    We study the multi-spin entanglement for the 1D anisotropic XY model concentrating on the simplest case of three-spin entanglement. As compared to the pairwise entanglement, three-party quantum correlations have a longer range and they are more robust on increasing the temperature. We find regions of the phase diagram of the system where bound entanglement occurs, both at zero and finite temperature. Bound entanglement in the ground state can be obtained by tuning the magnetic field. Thermal bound entanglement emerges naturally due to the effect of temperature on the free ground state entanglement.Comment: 7 pages, 3 figures; some typos corrected, references adde

    Electrostatic analogy for integrable pairing force Hamiltonians

    Full text link
    For the exactly solved reduced BCS model an electrostatic analogy exists; in particular it served to obtain the exact thermodynamic limit of the model from the Richardson Bethe ansatz equations. We present an electrostatic analogy for a wider class of integrable Hamiltonians with pairing force interactions. We apply it to obtain the exact thermodynamic limit of this class of models. To verify the analytical results, we compare them with numerical solutions of the Bethe ansatz equations for finite systems at half-filling for the ground state.Comment: 14 pages, 6 figures, revtex4. Minor change

    Algebraic Bethe Ansatz for a discrete-state BCS pairing model

    Full text link
    We show in detail how Richardson's exact solution of a discrete-state BCS (DBCS) model can be recovered as a special case of an algebraic Bethe Ansatz solution of the inhomogeneous XXX vertex model with twisted boundary conditions: by implementing the twist using Sklyanin's K-matrix construction and taking the quasiclassical limit, one obtains a complete set of conserved quantities, H_i, from which the DBCS Hamiltonian can be constructed as a second order polynomial. The eigenvalues and eigenstates of the H_i (which reduce to the Gaudin Hamiltonians in the limit of infinitely strong coupling) are exactly known in terms of a set of parameters determined by a set of on-shell Bethe Ansatz equations, which reproduce Richardson's equations for these parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ model and/or choosing a generic polynomial of the H_i as Hamiltonian, more general exactly solvable models can be constructed. -- To make the paper accessible to readers that are not Bethe Ansatz experts, the introductory sections include a self-contained review of those of its feature which are needed here.Comment: 17 pages, 5 figures, submitted to Phys. Rev.

    Superfluid qubit systems with ring shaped optical lattices

    Full text link
    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide a implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n10n\sim 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit.Comment: 14 revtex4-1 pages, 7 figs; to be published in Scientific Report

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie

    Exact relationship between the entanglement entropies of XY and quantum Ising chains

    Full text link
    We consider two prototypical quantum models, the spin-1/2 XY chain and the quantum Ising chain and study their entanglement entropy, S(l,L), of blocks of l spins in homogeneous or inhomogeneous systems of length L. By using two different approaches, free-fermion techniques and perturbational expansion, an exact relationship between the entropies is revealed. Using this relation we translate known results between the two models and obtain, among others, the additive constant of the entropy of the critical homogeneous quantum Ising chain and the effective central charge of the random XY chain.Comment: 6 page

    Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates

    Get PDF
    We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario based on the standard boson coherent states. We compare such a picture with that of Ref. 1 and show how our approach entails a simple formulation of the dimeric regime therein studied. This allows to recognize the parameters that govern the bifurcation mechanism causing self-trapping, and paves the way to the construction of analytic solutions. We present the results of a numerical simulation showing how the three-well dynamics has, in general, a cahotic behavior.Comment: 4 pages, 5 figure

    Exactly-Solvable Models Derived from a Generalized Gaudin Algebra

    Get PDF
    We introduce a generalized Gaudin Lie algebra and a complete set of mutually commuting quantum invariants allowing the derivation of several families of exactly solvable Hamiltonians. Different Hamiltonians correspond to different representations of the generators of the algebra. The derived exactly-solvable generalized Gaudin models include the Bardeen-Cooper-Schrieffer, Suhl-Matthias-Walker, the Lipkin-Meshkov-Glick, generalized Dicke, the Nuclear Interacting Boson Model, a new exactly-solvable Kondo-like impurity model, and many more that have not been exploited in the physics literature yet
    corecore