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Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates
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We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical
scenario based on the standard boson coherent states. We compare such a picture with that of Ref.
[1] and show how our approach entails a simple formulation of the dimeric regime therein studied.
This allows to recognize the parameters that govern the bifurcation mechanism causing self-trapping,
and paves the way to the construction of analytic solutions. We present the results of a numerical
simulation showing how the three-well dynamics has, in general, a cahotic behavior.

An increasing interest for the dynamics of coupled
bosonic wells [known in the literature as the dimer

(trimer) model in case of a pair (triplet) of coupled
wells] has been prompted recently by the construction
of devices where Bose-Einstein condensates (BEC) inter-
act through the tunneling effect (see [2] and references
therein). The theoretic work focused on such models,
both in the atomic physics community and in other ar-
eas of theoretical physics, has supplied a large amount of
results disclosing a quite structured interwell dynamics.

The two-well model (TWM) –used to represent two
coupled BECs in a symmetric double-well potential– has
been investigated within a picture based on the alge-
bra su(2) in Refs. [3], where, after stemming the model
from the many-body quantum theory of BECs, the initial
state with the atomic population self-trapped in one well
is shown to evolve in delocalized oscillations involving
both the wells. The same model has been studied previ-
ously in Ref. [4], both at the quantum level and from the
point of view of the dynamical system theory, to illustrate
the level splitting that characterizes the dimer spectrum
as a manifestation of the orbit bifurcation in the dimer
phase space. In Refs. [5] the dynamics of the asymmetric
TWM have been faced within the mean-field formulation
relatively to the π-phase oscillations as well as the self-
trapping effect. The latter was considered as well in Ref.
[4] and therein interpreted as a symmetry breaking phe-
nomenon. More recently, the TWM (and its S-well gen-
eralization) has been related [6,7] to the Bose-Hubbard
model [8] and the two-well ground-states have been inter-
preted as insulator/superconducting regimes. In particu-
lar, reformulating the TWM in an effective single-boson
realization –generalizable to any S-well system– has been
shown to favour the use of the system symmetries as well
as the recognition of the inner parameters controlling the
occurrence of doublets in the energy spectrum.

In this paper we consider some recent results proving
the existence of configurations with self-trapping within
the dynamics of symmetric trimer (identical interwell
couplings). These have been obtained in Ref. [1] by re-

casting the trimer Hamiltonian within a two-boson op-
erators picture (introduced in the sequel) which involves
the algebra su(3). Such a picture is the extension of the
dimer case [3] based on the su(2) (the formal setup for
S-well models involves [6,7] the algebra su(S)). The main
contribution of this paper is to apply to the trimer an
alternative approach that both reproduces the results of
the su(3) picture and show how the dynamical mecha-
nism causing self-trapping not only depends on the tun-
neling amplitude but also from the system initial con-
ditions. Such an approach relies on a boson coherent
state formulation previously developed for both boson
and spin lattice models [9] which seems to be very sim-
ple and effective. The symmetric trimer is described by
Hamiltonian

H = U
3

∑

i=1

n2
i − vN − 1

2

∑

i<ℓ

Tiℓ

(

a+i aℓ + a+ℓ ai
)

,

with Tiℓ = T , that one can derive from the many-body
quantum theory of BECs through a three-mode expan-
sion of the condensate field operator [1]. Parameters U ,
v, T , account for the interatomic scattering, the exter-
nal potential and the tunneling amplitude, respectively;
ni

.
= a+i ai count the bosons in the ith well (N = Σini),

while the destruction (creation) operators ai (a+i ) obey
the canonical commutators [ai, a

+

ℓ ] = δiℓ. Preceding
studies of the trimer dynamics have been focused on the
asymmetric case characterized by tunneling amplitudes
T12 ≫ T13, T23. Classically (aia

+

ℓ = a+ℓ ai, a
+

ℓ ≡ a∗ℓ ), the
asymmetric trimer has revealed [10] the presence of ho-
moclinic chaos, while, at the quantum level, the survival
of breather configurations [11] has been investigated on
the trimer viewed as the smallest possible closed chain.
If one derives the Heisenberg equations related toH for

the boson operators ai, a
+
i and implements the random

phase approximation in the equations for their expecta-
tion values zi = 〈ai〉, z∗i = 〈a+i 〉, the resulting equations
for the three-well dynamics are (j = 1, 2, 3)

ih̄żj = (2U |zj|2 − v + T/2)zj − T (z1 + z2 + z3)/2 , (1)
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which entail Σi|zi|2 as a conserved quantity replacing the
total boson number N such that [N,H ] = 0. The Hamil-
tonian structure of the Heisenberg equations is inherited
by Eqs. (1) that, in fact, are also obtained fromH(Z,Z∗)
≡ Σ3

j=1[(U |zj|2 − v)|zj |2 − T (z∗j zj+1 + c.c.)/2], by using
the standard Poisson brackets {z∗k, zj} = iδkj/h̄.
Another significant way to obtain Eqs. (1) from H re-

lies on applying the time-dependent variational principle
on a suitable trial state |Ψ〉 = eiθ|Z〉 with Z = (z1, z2, ...),
where zr’s are time-dependent complex parameters ac-
counting for the system evolution. Performing the varia-
tion of 〈Ψ|(i∂t −H)|Ψ〉 = 0 furnishes a system of hamil-
tonian equations for Z = (z1, ..., zr) and identifies θ with
the action of the system. If the trial state is defined as [9]

|Ψ〉 = eiθ|z1〉 ⊗ |z2〉 ⊗ |z3〉 , (2)

where |zi〉 are the standard bosonic coherent states that
obey the defining equation ai|zi〉 = zi|zi〉, then Eqs. (1)
are recoverd (up to the shift v → v + U ) in which
zi ≡ 〈zj |ai|zi〉, z∗i ≡ 〈zj |a+i |zi〉 = z∗i , |zi|2 ≡ 〈zj |ni|zi〉,
and dθ/dt is the Lagrangian associated to H. In addition
to describing the system evolution through |Ψ〉, this ap-
proach also provides a natural way to find the quantum
configuration (in terms of states) corresponding to the
initial conditions of a given classical motion.
In Ref. [1] the semiclassical treatment of the trimer

dynamics was based on deriving the equations of mo-
tion for the expectation values of the two-boson op-
erators forming the basis of su(3) instead of ai, a+i .
Such an algebra is generated by the creation operators
ǫ1 = a+1 a2, ǫ2 = a+2 a3, ǫ3 = a+3 a1, the destruction oper-
ators ǫ+i = (ǫi)

+, i = 1, 2, 3 and the (so-called) Cartan
operators h2 = (D2 −D3)/

√
3, h1 = D1, where

D1 =
n1 − n2

2
, D2 =

n2 − n3

2
, D3 =

n3 − n1

2
. (3)

By using imbalance operators (3), the su(3) algebraic
structure is specified by the commutators [ǫi, ǫ

+
i ] = 2Di,

[ǫi, ǫℓ] = εiℓk ǫ
+
k , [Dℓ, ǫℓ] = ǫℓ with i, k, ℓ ∈ [1, 3] (εiℓk

is the standard antisymmetric symbol), together with
[ǫi, Dℓ] = ǫi/2, and [ǫi, ǫ

+
ℓ ] = 0, for i 6= ℓ. Expressing

Hamiltonian H through h1 and h2 one finds

H = 2U(h2
1 + h2

2)− f(N)− T

2
(ǫ1 + ǫ2 + ǫ3 + h.c.) , (4)

with f(N) := UN2/3 + vN , where the operator N is a
group invariant, namely [N, g] = 0, ∀g ∈ su(3). This im-
plies that [N,H ] = 0. In this framework the Heisenberg
equations are easily carried out. If the random phase ap-
proximation 〈AB〉 ≡ 〈A〉〈B〉 is also implemented Heisen-
berg’s equations for the su(3) generators take the form























iǫ̇k = −(T + 4Uǫk)Dk +
T
4
εkiℓ(ǫ

+
i − ǫ+ℓ ) ,

iḣ1 = T
4
[(2ǫ1 − ǫ3 − ǫ2) − c.c.] ,

iḣ2 = T
4
[
√
3(ǫ3 − ǫ2) − c.c.] .

(5)

where we have used the displacement operators Dj for
simplifying the formulas. Notice that, in Eqs. (5) the
approximation 〈AB+BA〉 ≡ 2〈AB〉 has been repeatedly
applied to bilinear terms, and ǫℓ, ǫ

+

ℓ , h1, h2 have been
used in place of their expectation values 〈ǫℓ〉, 〈ǫ+ℓ 〉, 〈h1〉,
〈h2〉. A possible integrable regime is achieved by setting

h1 = 0 (⇔ n1 ≡ n2) , ǫ2 − ǫ+3 = 0 , ǫ1 − ǫ+1 = 0 ,

which leads to the reduced system of equations























iǫ̇1 = T
2
(ǫ+2 − ǫ2)

iǫ̇2 = T
2
(ǫ2 − ǫ+1 − 2D2)− 4U D2 ǫ2

iḣ2 = T
2
[
√
3ǫ+2 − c.c.] .

(6)

Their solutions have been calculated implicitly by geo-
metric arguments and reproduced numerically for various
choice of initial conditions in Ref. [1].
In the alternative solution scheme based on Eqs. (1)

the above constraints reduce to impose the condition
z1 = z2. This selects an integrable sub-dynamics. In
fact, Eqs. (1) become two,







ih̄ż1 = (2U |z1|2 − v)z1 − T
2
(z1 + z3)

ih̄ż3 = (2U |z3|2 − v)z3 − Tz1 ,

(7)

where the two costants of motion corresponding to the
energy and the total boson number (we set ni ≡ |zi|2)






E = U(2n2
1 + n2

3)− vN − Tn1 − T (z∗3z1 + z∗1z3)

N = 2n1 + n3

(8)

make Eqs. (7) integrable. The dynamical behavior is
obtained explicitly via a standard quadrature procedure
(see Refs. [5,12]) which furnishes the phase-independent
equation for D3

Ḋ2
3 =

9

16
(4T 2n1n3 −R2) (9)

by substituting R := [E + vN + Tn1 − U(2n2
1 + n2

3)]
= −T (z∗3z1 + C.c.) inside the (squared) equation Ḋ2

3 =
−9T 2[z∗3z1 − c.c.]2/16 for D3. Introducing the further
constant of motion N to obtain Ḋ2

3 written in terms of
the unique variable D3 requires that n1 and n2 are ex-
pressed as n1 = (N − 2D3)/3 and n3 = (N + 4D3)/3.
These, in turn, substituted in Eq. (9) give the equation

Ḋ2
3 =

T 2

4
(N − 2D3)(N + 4D3) − 9

16
R2(D3) , (10)

for the imbalance variable D3 = (n3 − n1)/2, in which

R(D3) ≡ E + vN +
T

3
(N − 2D3)−

U

3
(N2 + 8D2

3) =

2



=
2

3
{(A−D2)[T + 4U(A+D2)]− TN K(P )}

with A := D3(0), K(P ) := 1

2
[(a + 2)2 − 9a2]

1

2 cos∆,
P := (a,∆), a = 2A/N , and ∆ := θ3(0)−θ1(0). The sec-
ond version of R(D3) is obtained by writing E in terms of
the initial conditions D3(0), θk(0). Phases θj are defined
by zk =

√
nke

iθk . Eq. (10) can be cast in the dimension-
less form (dx/ds)2 = −2Vτ (x;P ) with s := NUt and

Vτ (x;P ) :=
1

2

[

(a−x)(a+x+τ/2)−τK
]2−τ2

2
(1−x)(1+2x)

where x := 2D3/N (x ∈ [−1, 1]), τ := T/NU . In view
of the fact that both the squared term in Vτ (namely
R2) and (dx/ds)2 are nonnegative, the further condition
(1− x)(1 + 2x) ≥ 0 must be accounted for which implies
the restriction of the x range to −1/2 ≤ x ≤ 1.
The reduction of Eq. (7) to Eq. (10) allows one to

construct explicit solutions in terms of elliptic func-
tions by recasting the quartic term via standard trans-
formation methods [14]. This will be enacted else-
where. Operationally, our goal –the description of bifor-
cation mechanism inherent in Eq. (10)– can be achieved
as well through the equivalent potential problem E =
1

2
(dx/ds)2 + Vτ (x;P ) at E = 0, where parameters N , K

and x(0) in Vτ are fixed by setting the initial conditions.
With negative τ and a suitable choice of the other pa-

rameters, Vτ can exhibit an asymmetric double-well. In
general, three solutions are obtained by annihilating

dVτ

dx
= 2x3 +

3τ

2
x2 +

1

4

[

9τ2 − 8βτ(P )
]

x− τ

2

[

τ + βτ (P )
]

,

where β(τ, P ) := (a + τ/4)2 − τ(K + τ/16), that corre-
spond to a maximum of Vτ (x;P ) with two side minima.
In particular, setting a = 1 reproduces the conditions

under which dynamics was studied in Ref. [1] (depleted
twin wells, that is n3(0) ≡ 1), and leads to the potential

Vτ (x) =
1

2
(1 − x)2

(

x+
τ

2
+ 1

)2

− τ2

2
(1− x)(1 + 2x)

whose maximum is such that Vτ (xm) = 0 with xm = 0
when τ = −2/3. For τ > −2/3 one has Vτ (xm) > 0.
The important feature thus emerging (see Fig. 1) is that,
whenever the potential maximum is nonnegative, Vτ (x)
generates two noncommunicating basins with Vτ (x) ≤ 0
(separated by a forbidden interval where Vτ > 0) entail-
ing two independent oscillatory motions. In each basins
the motion has a periodic character. This represents the
bifurcation effect reminescent of the behavior manifested
by two-well dynamics [4,7].
What we emphasize here, based on our zj description,

is that the onset of separated motions can be caused by
varying the other parameters of the problem. In particu-
lar, a high sensitivity is manifested relatively to the initial
phases incorporated in ∆. Suitable changes of the latter

are capable of switching on the bifurcation mechanism
even for a 6= 1. Such a situation is represented in Fig. 2
for a = 0.99 (twin wells almost empty) and τ = −2/3,
where various potential wells are generated by varying
cos∆ in [−1, 1]. For sufficiently low values of cos∆ the
presence of the maximum is ensured. The ‘opposite’ case
a = −0.49 and τ = −1/3 (corresponding to twin wells
almost half-filled and n3(0) ≃ 0) of Fig. 3 confirms the
presence of isolated basins as well as the case with a more
negative coupling τ = −0.7 < −2/3 and a = 0.99.
Decreasing sufficiently the value of τ (Fig. 4 illustrates

the case τ = −0.8 with a = 0.99) by keeping the same
range for cos∆ entails situations where wells never ex-
hibit a local maximum. This can be proved analitically
in the special case τ = −1 in which the potential becomes

Vτ (x;P ) ≡ 1

2

[

(a− 1/4)2 +K −X2
]2

− 9

16
+X2

with X = x−1/4, and the stationary points can be calcu-
lated explicitly. One finds a maximum at xm = 1/4 with
Vτ (xm) < 0 so that no bifurcation effect occurs. The side
minima are placed at xr,ℓ = 1/4± [K−1+(a−1/4)2]1/2.
These are real provided K− 1+ (a− 1/4)2 ≥ 0 namely if

cos∆ ≥ [1− (a− 1/4)2]/[(1− a)(1 + 2a)]
1

2 .

For a generic τ , the maximum depends on a and ∆
in a complicated way which makes difficult the analytic
calculation of Vτ (xm) and of its sign. Nevertheless, some
necessary conditions ensuring its existence can be ob-
tained explicitly. As suggested by Figs. 1-3, increasing ∆
with both τ and a constant implies that the maximum at
x = xm and the left minimum at x = xℓ reach the (flex)
point x = c for critical value ∆ ≡ ∆∗. Since the interval
[xℓ, xm] where dVτ/dx > 0 vanishes for xℓ, xm → c then

lim
∆→∆∗

(

dVτ/dx
)

xl,xm

= 0 =
(

d2Vτ/dx
2
)

c
. (11)

The derivation of the roots of d2Vτ/dx
2 = 0 at x = c

x± =
τ

4

{

−1± [8(2a2 + aτ − 2Kτ)/(3τ2)− 5]1/2
}

,

from d2Vτ/dx
2 = 6x2+3τx−2βτ (P )+9τ2/4 allows one

to exploit the fact that the lowest one, x−, is a maximum
of dVτ/dx corresponding to the Vτ flex point at x = c.
When

(

dVτ/dx
)

c
≡ 8τ

33/2|τ | [βτ (P )]
3

2 − τ(τ + 1) ≥ 0 (12)

becomes negative the maximum disappears (see, e. g.,
Figs. 1-3). The bifurcation condition Vτ (x) > 0 must be
searched within the parameter space domain where a, ∆,
τ satisfy formula (12).
The analysis just developed shows that changing ∆

can modify deeply the system dynamics and that, in gen-
eral, the onset of the bifurcation effect is governed by the

3



complex interplay of all parameters a, ∆, τ . A complete
study of the dynamics requires that one considers any
possible initial condition for the dynamics and thus, e.
g., the situations in which n1(0) 6= n2(0), excluded in the
present paper. In this case the nonintegrable character
of the system crops up in a dramatic way as illustrated
in Fig. 5. The systematic analysis of fixed points for the
symmetric three-well dynamics and thus the emergence
of chaos close to the hyperbolic points is in progress at
this moment. It will be discussed in a separate paper.
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FIG. 1. By varying τ in [−0.75,−0.63] with a = 1, Vτ (x,P ) generates a second (small) basin on the left (dashed potential
corresponds to τ ≃ −0.66).

FIG. 2. By varying ∆ in [0, π] with a = 0.99, Vτ (x, P ) generates a second (small) basin on the left (dashed potential
corresponds to ∆ ≃ 1.40).

FIG. 3. Representation of bifurcation mechanism by varying ∆ ∈ [0, π] in Vτ (x,P ) with a = −0.49, τ = −1/3.

FIG. 4. Vτ (x, P ) with a = 0.99 and τ = 0.8: a sufficiently negative τ involves a single basin for any ∆ ∈ [0, π].

FIG. 5. Poincaré section of the ξ1 − φ1 plane, where ξ1 := 1− 2n1/N and φ1 = θ2 − θ1, obtained by setting n3 ≃ 6.85; this
is derived by numerical integration of Eqs. (1) with energy E ≃ 92.33, N = 10, T = U = 1.
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