73 research outputs found

    An approach to phenotypic analysis and environmental variability. The examples of the genera Dianthus L. and Lotus L. in the north of Portugal

    Get PDF
    The analysis of the correlation between phenotypic plasticity and environmental variability has been very useful to describe the morphologic responses of individuals to environmental factors affecting them (in the present contribution the altitudinal variation), from a genecological perpective. However, the literature shows that the studies in this area have had a monospecific or monogeneric use. As a consequence, intergeneric comparative descriptions have not been possible. In the present work we propose an analytical method to compare the morphological expressivity of individuals included in the genera Dianthus and Lotus from the north of Portugal by means of a contingency matrix. This matrix was elaborated on the basis of amplitude parameters, in order to describe the variability present in the basic matrix of each genus studied. The results pointed out the existence of opposite phenotypic behaviours dependent on the altitudinal variation, thus indicating the importance of the analysis between different groups of taxa as a reference for the comparison of their morphological expressivities

    The Caspofungin Paradoxical Effect is a Tolerant "Eagle Effect" in the Filamentous Fungal Pathogen Aspergillus fumigatus

    Get PDF
    Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≄0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.We thank the Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) grants no. 2018/00715-3 (C.V.), 2017/07536-4 (A.C.C.), 2016/12948-7 (P.A.C.), and 2016/07870-9 (G.H.G.) and the Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq) grant no. 301058/2019-9 and 404735/2018-5 (G.H.G.), both from Brazil, and the National Institutes of Health/National Institute of Allergy and Infectious Diseases (R01AI153356), from the USA. This work was also supported by the Wellcome Trust grants no. 219551/Z/19/Z and 208396/Z/17/Z to M.B.S

    Antagonism of the Azoles to Olorofim and Cross-Resistance Are Governed by Linked Transcriptional Networks in Aspergillus fumigatus

    Get PDF
    Aspergillosis, in its various manifestations, is a major cause of morbidity and mortality. Very few classes of antifungal drugs have been approved for clinical use to treat these diseases and resistance to the first-line therapeutic class, the triazoles are increasing. A new class of antifungals that target pyrimidine biosynthesis, the orotomides, are currently in development with the first compound in this class, olorofim in late-stage clinical trials. In this study, we identified an antagonistic action of the triazoles on the action of olorofim. We showed that this antagonism was the result of an azole-induced upregulation of the pyrimidine biosynthesis pathway. Intriguingly, we showed that loss of function in the higher order transcription factor, HapB a member of the heterotrimeric HapB/C/E (CBC) complex or the regulator of nitrogen metabolic genes AreA, led to cross-resistance to both the azoles and olorofim, indicating that factors that govern resistance were under common regulatory control. However, the loss of azole-induced antagonism required decoupling of the pyrimidine biosynthetic pathway in a manner independent of the action of a single transcription factor. Our study provided evidence for complex transcriptional crosstalk between the pyrimidine and ergosterol biosynthetic pathways. IMPORTANCE: Aspergillosis is a spectrum of diseases and a major cause of morbidity and mortality. To treat these diseases, there are a few classes of antifungal drugs approved for clinical use. Resistance to the first line treatment, the azoles, is increasing. The first antifungal, olorofim, which is in the novel class of orotomides, is currently in development. Here, we showed an antagonistic effect between the azoles and olorofim, which was a result of dysregulation of the pyrimidine pathway, the target of olorofim, and the ergosterol biosynthesis pathway, the target of the azoles.This work was supported by the Wellcome Trust grant number 219551/Z/19/Z and 208396/Z/17/Z to M.J.B. C.V. was funded by a postdoctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-BEPE 2020/01131-5).S

    Morpho-environmental characterization of the genus Baldellia Parl. (Alismataceae) in the Iberian Peninsula, Balearic islands and North Morocco

    Get PDF
    The genus Baldellia Parl. has always been a complex taxon. Three species and three subspecies have been proposed for the Iberian Peninsula. The morphological variation of this genus in the Iberian Peninsula, Balearic islands and northern Morocco, and its thermo-pluviometric and altitudinal correlation are the focus of this contribution. Twenty-eight morphological variables were examined and subjected to a multivariate statistical analysis. The three morphotypes observed (Form 1, which includes B. ranunculoides subsp. repens and B. alpestris; Form 2, which includes B. ranunculoides and Form 3 for the new combination B. ranunculoides subsp. ranunculoides var. tangerina (Pau) J. Rocha, A. Crespi, M. Garcia-Barriuso, R. Almeida, J. Honrado, comb. nova proposed here for the first time) seem to represent different reproductive strategies. Morphological variables related with the presence or absence of stolons and the architecture of the inflorescence; the size and number of fruits are the most discriminating variables. Form 1 represents the asexual morphotype; Forms 2 and 3 correspond to morphotypes for which sexual reproduction is preferential. The environmental approach revealed that the asexual form (Form 1) grows in temperate, in more humid conditions, and within a broad altitudinal range. In contrast, the two sexual forms are more common in warmer and drier conditions, and occur over a narrower interval of altitudes

    Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole

    Get PDF
    Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. Importance: The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.J.A. is funded by an AtracciĂłn de Talento Modalidad 1 (020-T1/BMD-200) contract of the Madrid Regional Government. J.S. has been funded by a BSAC Scholarship (bsac-2016-0049). C.V. was funded by FAPESP (2108/00715-3 and 2020/01131-5). G.H.G. hasbeen funded by FAPESP (2016/07870-9 and 2021/04977-5), CNPq (301058/2019-9 and404735/2018-5) and by the NIH/NIAID (grant R01AI153356). S.G. was cofunded by the NIHR Manchester Research Centre and the Fungal Infection Trust.S

    Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion

    Get PDF
    The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution
    • 

    corecore