155 research outputs found
Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips
<p>Abstract</p> <p>Purpose</p> <p>Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts.</p> <p>Methods</p> <p>A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences.</p> <p>Results</p> <p>Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant.</p> <p>Conclusions</p> <p>The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.</p
Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research
Investigation of mechanical and fracture properties of wire and arc additively manufactured low carbon steel components
Wire and Arc Additive Manufacturing (WAAM) technology offers efficient fabrication of large scale products and is currently being implemented across various industries. In this study, an experimental investigation has been carried out to characterise the mechanical and fracture properties of WAAM components made of ER70S-6 and ER100S-1 metal wires. Microhardness, tensile and fracture toughness tests have been performed on the specimens extracted from the WAAM built walls which were fabricated using an oscillating pattern. The specimens were extracted from different locations, at the top and bottom of the WAAM walls, in two different orientations with respect to the deposition direction. The results show that the material hardness and yield strength of ER100S-1 built wall are higher than ER70S-6 by 62% and 42%, respectively. Moreover, in the walls made with both materials, the yield and ultimate tensile strength values were found to be slightly higher in specimens extracted in deposition (horizontal) direction when compared to specimens extracted in the built (vertical) direction. The average value of fracture toughness parameter for ER70S-6 has been found to be 88% higher than ER100S-1 material. Furthermore, the results show that the specimen extraction location in ER100S-1 wall significantly influences the fracture toughness values obtained from experiments. The results from this study have been compared with those available in the literature and discussed in terms of the mechanical and fracture properties effects on structural integrity assessment of WAAM components
Characterization of Emissions from a Desktop 3D Printer
3D printers are currently widely available and very popular among the general public. However, the use of these devices may pose health risks to users, attributable to air-quality issues arising from gaseous and particulate emissions in particular. We characterized emissions from a low-end 3D printer based on material extrusion, using the most common polymers: acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA). Measurements were carried out in an emission chamber and a conventional room. Particle emission rates were obtained by direct measurement and modeling, whereas the influence of extrusion temperature was also evaluated. ABS was the material with the highest aerosol emission rate. The nanoparticle emission ranged from 3.7.10(8) to 1.4.10(9) particles per second (# s(-1)) in chamber measurements and from 2.0.10(9) to 4.0.10(9) # s(-1)in room measurements, when the recommended extruder temperature was used. Printing with PLA emitted nanoparticles at the rate of 1.0.10(7) # s(-1) inside the chamber and negligible emissions in room experiments. Emission rates were observed to depend strongly on extruder temperature. The particles' mean size ranged from 7.8 to 10.5 nanometers (nm). We also detected a significant emission rate of particles of 1 to 3nm in size during all printing events. The amounts of volatile organic and other gaseous compounds were only traceable and are not expected to pose health risks. Our study suggests that measures preventing human exposure to high nanoparticle concentrations should be adopted when using low-end 3D printers.Peer reviewe
- …