203 research outputs found

    Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Get PDF
    The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects

    Tabletop X-ray Lasers

    Get PDF
    Details of schemes for two tabletop size x‐ray lasers that require a high‐intensity short‐pulse driving laser are discussed. The first is based on rapid recombination following optical‐field ionization. Analytical and numerical calculations of the output properties are presented. Propagation in the confocal geometry is discussed and a solution for x‐ray lasing in Li‐like N at 247 Å is described. Since the calculated gain coefficient depends strongly on the electron temperature, the methods of calculating electron heating following field ionization are discussed. Recent experiments aimed at demonstrating lasing in H‐like Li at 135 Å are discussed along with modeling results. The second x‐ray laser scheme is based on the population inversion obtained during inner‐shell photoionization by hard x rays. This approach has significantly higher‐energy requirements, but lasing occurs at very short wavelengths (λ ≀ 15 Å). Experiments that are possible with existing lasers are discussed

    Estimation of the Tilt of the Stellar Velocity Ellipsoid from RAVE and Implications for Mass Models

    Get PDF
    We present a measure of the inclination of the velocity ellipsoid at 1 kpc below the Galactic plane using a sample of red clump giants from the RAVE DR2 release. We find that the velocity ellipsoid is tilted towards the Galactic plane with an inclination of 7.3 +/-1.8 degree. We compare this value to computed inclinations for two mass models of the Milky Way. We find that our measurement is consistent with a short scale length of the stellar disc (Rd ~2 kpc) if the dark halo is oblate or with a long scale length (Rd~3 kpc) if the dark halo is prolate. Once combined with independent constraints on the flattening of the halo, our measurement suggests that the scale length is approximately halfway between these two extreme values, with a preferred range [2.5-2.7] kpc for a nearly spherical halo. Nevertheless, no model can be clearly ruled out. With the continuation of the RAVE survey, it will be possible to provide a strong constraint on the mass distribution of the Milky Way using refined measurements of the orientation of the velocity ellipsoid.Comment: Accepted for publication in MNRAS, 10 pages, 9 figures, 2 table

    Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    Get PDF
    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet

    Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility

    Get PDF
    Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D[superscript 3]He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ~0.5–2.5 ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ~1 MG if B fields or ~10[superscript 9] V cm[superscript −1] if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.United States. Dept. of Energy (DE-FG52-07 NA280 59)United States. Dept. of Energy (DE-FG03-03SF22691)Lawrence Livermore National Laboratory (B543881)Lawrence Livermore National Laboratory (LD RD-08-ER-062)University of Rochester. Fusion Science Center (412761-G)General Atomics (DE-AC52-06NA 27279)Stewardship Science Graduate Fellowship (DE-FC52-08NA28752

    T–T Neutron Spectrum from Inertial Confinement Implosions

    Get PDF
    A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n–D and n–T elastic scattering at 14.1 MeV using deuterium–tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)[superscript 4]He (tt) reaction yields relative to the D(t,n)[superscript]He (dt) reaction yield for deuterium–tritium mixtures with fT/fD between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)[superscript 4]He reaction have been made for each of these target configurations.National Laser User’s Facility (Grant NA0000877)United States. Dept. of Energy (Grant DE-FG52-09NA29553)University of Rochester. Fusion Science Center (Rochester Subaward 415023-G, UR Account 5-24431)University of Rochester. Laboratory for Laser Energetics (Grant 412160-001G)Lawrence Livermore National Laboratory (Grants B580243 and DE-AC52-07NA27344

    Increased Expression of PITX2 Transcription Factor Contributes to Ovarian Cancer Progression

    Get PDF
    BACKGROUND: Paired-like homeodomain 2 (PITX2) is a bicoid homeodomain transcription factor which plays an essential role in maintaining embryonic left-right asymmetry during vertebrate embryogenesis. However, emerging evidence suggests that the aberrant upregulation of PITX2 may be associated with tumor progression, yet the functional role that PITX2 plays in tumorigenesis remains unknown. PRINCIPAL FINDINGS: Using real-time quantitative RT-PCR (Q-PCR), Western blot and immunohistochemical (IHC) analyses, we demonstrated that PITX2 was frequently overexpressed in ovarian cancer samples and cell lines. Clinicopathological correlation showed that the upregulated PITX2 was significantly associated with high-grade (P = 0.023) and clear cell subtype (P = 0.011) using Q-PCR and high-grade (P<0.001) ovarian cancer by IHC analysis. Functionally, enforced expression of PITX2 could promote ovarian cancer cell proliferation, anchorage-independent growth ability, migration/invasion and tumor growth in xenograft model mice. Moreover, enforced expression of PITX2 elevated the cell cycle regulatory proteins such as Cyclin-D1 and C-myc. Conversely, RNAi mediated knockdown of PITX2 in PITX2-high expressing ovarian cancer cells had the opposite effect. CONCLUSION: Our findings suggest that the increased expression PITX2 is involved in ovarian cancer progression through promoting cell growth and cell migration/invasion. Thus, targeting PITX2 may serve as a potential therapeutic modality in the management of high-grade ovarian tumor.published_or_final_versio
    • 

    corecore