192 research outputs found

    Evaluatie en waardering van de archeologische sites Rooiveld-Papenvijvers(Oostkamp, provincie West-Vlaanderen)

    Get PDF
    Dit rapport beschrijft de resultaten van het waarderend onderzoek op de archeologische sites Rooiveld-Papenvijvers in Oostkamp (West-Vlaanderen). De oudste sporen van menselijke activiteit in dit gebied gaan terug tot het mesolithicum. De bewoning tijdens het neolithicum is goed gedocumenteerd. Naast de opgegraven nederzetting te Waardamme Vijvers, leverde het proefsleuvenonderzoek te Papenvijvers een finaal-neolithische site (3de millennium cal BC). Verder leverden de beperkte prospecties op verschillende plaatsen, waaronder Oostkamp Nieuwenhove en Hertsberge Papevijvers, lithische artefacten op die naar alle waarschijnlijkheid tot een niet nader te bepalen fase van het neolithicum behoren. Deze situatie is vrij uniek voor Vlaanderen. Neolithische bewoning in de zandige delen van Vlaanderen ontbrak tot nog toe vrijwel, met uitzondering van enkele graven van de Klokbekercultuur. De opgraving te Waardamme Vijvers is bijzonder vanwege de ontdekking van de eerste en vooralsnog enige huisplattegrond uit het neolithicum in Vlaanderen. Sporen uit de bronstijd zijn dankzij de luchtfotografie heel talrijk in het gebied. Het desktop onderzoek leverde in totaal een negental cirkelvormige structuren op die naar alle waarschijnlijkheid mogen geĂŻnterpreteerd worden als resten van grafheuvels uit de vroege en midden-bronstijd. Het is ook duidelijk dat de regio in de bronstijd bewoond was, o.a. door de opgraving op de site Waardamme Vijvers. Voor de ijzertijd is de situatie vermoedelijk gelijklopend. De enige nederzetting die uit deze periode werd aangetroffen komt eveneens uit de opgraving in Waardamme Vijvers. Voor de Romeinse periode beschikken we slechts over de sporen van een grafveld op Waardamme Vijvers en keramiekvondsten. Latere periodes zijn alleen via cartografische bronnen gedocumenteerd. Het rapport eindigt met aanbevelingen voor verder onderzoek en beheer van dit gebied

    Towards metal-organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection

    Get PDF
    We present a highly sensitive gas detection approach for the infamous 'nerve agent' group of alkyl phosphonate compounds. Signal transduction is achieved by monitoring the work function shift of metal-organic framework UiO-66-NH2 coated electrodes upon exposure to ppb-level concentrations of a target simulant. Using the Kelvin probe technique, we demonstrate the potential of electrically insulating MOFs for integration in field effect devices such as ChemFETs: a three orders of magnitude improvement over previous work function-based detection of nerve agent simulants. Moreover, the signal is fully reversible both in dry and humid conditions, down to low ppb concentrations. Comprehensive investigation of the interactions that lead towards this high sensitivity points towards a series of confined interactions between the analyte and the pore interior of UiO-66-NH2

    Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?

    Get PDF
    Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castillejaoccidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes

    Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale.

    Get PDF
    Circularly polarized light is incident on a nanostructured chiral meta-surface. In the nanostructured unit cells whose chirality matches that of light, superchiral light is forming and strong optical second harmonic generation can be observed

    Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging

    Get PDF
    The presence and variation of chemical functionality and defects in crystalline materials, such as metal–organic frameworks (MOFs), have tremendous impact on their properties. Finding a means of identifying and characterizing this chemical diversity is an important ongoing challenge. This task is complicated by the characteristic problem of bulk measurements only giving a statistical average over an entire sample, leaving uncharacterized any diversity that might exist between crystallites or even within individual crystals. Here we show that by using fluorescence imaging and lifetime analysis, both the spatial arrangement of functionalities and the level of defects within a multivariable MOF crystal can be determined for the bulk as well as for the individual constituent crystals. We apply these methods to UiO-67, to study the incorporation of functional groups and their consequences on the structural features. We believe that the potential of the techniques presented here in uncovering chemical diversity in what is generally assumed to be homogeneous systems can provide a new level of understanding of materials properties

    Evolution of form in metal-organic frameworks

    Get PDF
    Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal-organic materials (MOMs), an emerging class of porous materials consisting of metal-organic frameworks (MOFs) and metal-organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of MOM crystals. Here we demonstrate sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF. Moreover, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs. We anticipate that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future.ope

    Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat

    Get PDF
    Background and Aims Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality. Methods Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray Ό-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution. Results Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar. Conclusions Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose

    Polymer nanofilms with enhanced microporosity by interfacial polymerization

    Get PDF
    Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability, and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity which are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultra-thin polyarylate nanofilms with thickness down to 20 nm were formed in-situ by interfacial polymerisation. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalised by molecular simulations, are achieved by utilising contorted monomers for the interfacial polymerisation. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in-situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from noncontorted planar monomers
    • 

    corecore