8 research outputs found

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Neoarchean-mesoproterozoic mafic dyke swarms of the indian shield mapped using google earth™ images and arcgis™, and links with large igneous provinces

    No full text
    We present dyke swarm maps generated using Google Earth™ images, ArcGIS™, field data, and available geochronological ages of Neoarchean-Mesoproterozoic (ranging in age from ~2.80 to ~1.10Â Ga) mafic dyke swarms and associated magmatic units of the different Archean cratons of the Indian shield which represent the plumbing system of Large Igneous Provinces (LIPs). The spatial and temporal distributions together with the trends of the dyke swarms provide important informations about geodynamics. Twenty four dyke swarms (17 have been precisely dated), mostly mafic in nature, have been mapped from the different cratons and named/re-named to best reflect their location, trend, distribution and distinction from other swarms. We have identified 14 distinct magmatic events during the Neoarchean-Mesoproterozoic in the Indian shield. These intraplate magmatic events (many of LIP scale) of the Indian shield and their matches with coeval LIPs on other crustal blocks suggest connections of the Indian shield within known supercontinents, such as Kenorland/Superia (~2.75–2.07Â Ga), Columbia/Nuna (1.90–1.38Â Ga), and Rodinia (1.20–0.72Â Ga). However, further detailed U–Pb geochronology and associated paleomagnetism are required to come to any definite constraints on the position of the Indian cratons within these supercontinents

    Turbulent Chaos and Self-Organization in Cosmic Natural Media

    No full text

    ATLAS: Technical proposal for a general-purpose p p experiment at the Large Hadron Collider at CERN

    No full text

    ATLAS calorimeter performance

    No full text

    ATLAS computing technical proposal

    No full text
    corecore