12 research outputs found

    Program Synthesis with Best-First Bottom-Up Search

    Full text link
    Cost-guided bottom-up search (BUS) algorithms use a cost function to guide the search to solve program synthesis tasks. In this paper, we show that current state-of-the-art cost-guided BUS algorithms suffer from a common problem: they can lose useful information given by the model and fail to perform the search in a best-first order according to a cost function. We introduce a novel best-first bottom-up search algorithm, which we call Bee Search, that does not suffer information loss and is able to perform cost-guided bottom-up synthesis in a best-first manner. Importantly, Bee Search performs best-first search with respect to the generation of programs, i.e., it does not even create in memory programs that are more expensive than the solution program. It attains best-first ordering with respect to generation by performing a search in an abstract space of program costs. We also introduce a new cost function that better uses the information provided by an existing cost model. Empirical results on string manipulation and bit-vector tasks show that Bee Search can outperform existing cost-guided BUS approaches when employing more complex domain-specific languages (DSLs); Bee Search and previous approaches perform equally well with simpler DSLs. Furthermore, our new cost function with Bee Search outperforms previous cost functions on string manipulation tasks.Comment: Published at the Journal of Artificial Intelligence Research (JAIR

    Fog computing security: a review of current applications and security solutions

    Get PDF
    Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems

    Program Synthesis with Best-First Bottom-Up Search (Abstract Reprint)

    No full text
    Cost-guided bottom-up search (BUS) algorithms use a cost function to guide the search to solve program synthesis tasks. In this paper, we show that current state-of-the-art cost-guided BUS algorithms suffer from a common problem: they can lose useful information given by the model and fail to perform the search in a best-first order according to a cost function. We introduce a novel best-first bottom-up search algorithm, which we call Bee Search, that does not suffer information loss and is able to perform cost-guided bottom-up synthesis in a best-first manner. Importantly, Bee Search performs best-first search with respect to the generation of programs, i.e., it does not even create in memory programs that are more expensive than the solution program. It attains best-first ordering with respect to generation by performing a search in an abstract space of program costs. We also introduce a new cost function that better uses the information provided by an existing cost model. Empirical results on string manipulation and bit-vector tasks show that Bee Search can outperform existing cost-guided BUS approaches when employing more complex domain-specific languages (DSLs); Bee Search and previous approaches perform equally well with simpler DSLs. Furthermore, our new cost function with Bee Search outperforms previous cost functions on string manipulation tasks

    Probing environmental sustainability through the diversity-pollution nexus:a global perspective via PM2.5 and NO2

    No full text
    Abstract This paper analyzes the effects of ethnic and religious diversity on air pollution for 187 countries around the world (categorized into high-income, middle-income and low-income countries) from 1990 to 2020. We determine the long-run relationship between the variables using panel-fixed effects and GMM models. Air pollution emission factors are spatially explicit into emissions of particulate matter (PM2.5) and nitrogen dioxide (NO₂) and the Alesina’s fragmentation index has been used to calculate ethnic and religious diversity. The results show that ethnic and religious diversity both have significant negative impacts on air pollution (PM2.5 and NO₂). Furthermore, the results are more significant for high-income and middle-income countries and vice versa for low-income countries. This study suggests that diversity is a natural phenomenon; however, its disastrous effects may be curtailed by providing equal opportunities and promoting a peaceful society, as done in high-income countries, to ensure the well-being of the people through cohesiveness. Policymakers need to promote collective action and communication among different groups while acknowledging that investment for public benefits often requires broad social consensus and solidarity

    Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens

    No full text
    Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH

    A Multifunctional Self-Assembled Monolayer for Highly Luminescent Pure-Blue Quasi-2D Perovskite Light-Emitting Diodes

    No full text
    Quasi-2D perovskite materials have promise to unlock the full potential of blue perovskite light-emitting diodes (PeLEDs). However, the efficiency of blue emissive PeLEDs still lags behind the green- and red-emitting counterparts. Here, a multifunctional passivating molecule of (2-(3,6-dichloro-9H-carbazol-9-yl)ethyl)phosphonic acid (36ClCzEPA) that can form a self-assembled monolayer (SAM) on the indium tin oxide (ITO) electrode is reported. The 36ClCzEPA SAM facilitates hole injection by increasing the work function of ITO through the strong interfacial dipole layer formation at the interface between the perovskite emitter and the ITO electrode. Moreover, it allows a pure-blue emission and reduces the exciton quenching of luminescence in the perovskite emitter considerably because of its neutral nature, compared to the commonly used acidic PEDOT:PSS. Furthermore, chlorine atoms in the 36ClCzEPA promote well-ordered crystalline 2D perovskite phases and decrease interfacial trap-assisted deactivation channels by interfacial passivation. These beneficial characteristics of the 36ClCzEPA SAM yield the excellent luminescence property of PeLEDs with a maximum luminance of 1253 cd m(-2) and a peak external quantum efficiency of 4.80% at 473 nm. This work demonstrates that a well-designed molecule forming an interfacial SAM can be an important component for enhancing the luminescence property of pure-blue PeLEDs

    Table1.DOCX

    No full text
    <p>Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.</p

    Image3.JPEG

    No full text
    <p>Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.</p

    Image4.JPEG

    No full text
    <p>Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.</p
    corecore