15 research outputs found

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≄18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Evaluating Collapse Fragility Curves for Existing Buildings Retrofitted Using Seismic Isolation

    No full text
    Few studies have investigated so far the collapse capacity of buildings with base-isolation. In such studies, preliminary considerations have been drawn based on a number of assumptions regarding: (i) the methodology used for assessing the collapse capacity, (ii) the collapse conditions and failure modes assumed for both superstructure and isolation system, and (iii) the numerical modeling assumptions. The main results pointed out that the collapse conditions of base-isolated buildings may occur for intensity levels slightly higher than those associated with the design earthquake. In this paper, further developments are made through the use of enhanced models for the description of the behavior of a rubber-based isolation system and the assumption of more rational collapse conditions. Collapse fragility functions, in terms of mean and dispersion values, are proposed for two archetypes representative of existing buildings retrofitted using the seismic isolation technique. The collapse margin ratio (median collapse capacity Sa,C, namely the spectral acceleration associated to a probability of exceedance equal to 50%, divided by the design spectral acceleration at the collapse prevention limit state) has been evaluated for each examined case-study. Values ranging from 1.10 to 1.45 were found

    Identification and Calibration of Advanced Hysteresis Models for Recycled Rubber–Fiber-Reinforced Bearings

    No full text
    Several studies have investigated the feasibility of reducing the implementation cost of base isolation. In this optic, recycled rubber–fiber-reinforced bearings (RR–FRBs) represent a suitable solution for structures in developing countries. Such devices can be produced using simple manufacturing procedures at a limited cost with respect to conventional isolators. Full-scale tests on RR–FRBs featured energy dissipation values similar to those associated with high-damping natural rubber bearings (HDRBs). Equivalent viscous damping, ranging from 10 to 15%, resulted from testing of RR–FRBs, with poor degradation after cyclic loading. On the other hand, a sensible softening response, associated with the axial–shear interaction, which is much more significant compared to that exhibited by HDRBs, was observed. As a result, the numerical description of the cyclic behavior of the RR–FRBs appears to be more challenging than that of HDRBs. In past studies, simple bilinear hysteresis models were adopted to describe the cyclic behavior of low-cost rubber bearings, thus completely neglecting the P-delta effects which significantly influence the dynamic behavior of such bearings. In this paper, advanced hysteresis numerical models, able to capture the nonlinear response of RR–FRBs, were examined and properly calibrated using a powerful optimization technique, the differential evolution algorithm. Preliminary results of the numerical analyses, performed in OpenSees, were described and compared with those of experimental tests on low-cost rubber bearings. The findings of this study represent the first step of a characterization procedure aimed to provide an accurate representation of the dynamic behavior of these particular bearings. Obviously, additional studies are needed to compare results of response history analyses with those of experimental tests for real structures on RR–FRBs. In this optic, the present paper, along with further studies, could provide a new impulse for the application of low-cost rubber-based devices in current practic

    Identification and Calibration of Advanced Hysteresis Models for Recycled Rubber–Fiber-Reinforced Bearings

    No full text
    Several studies have investigated the feasibility of reducing the implementation cost of base isolation. In this optic, recycled rubber–fiber-reinforced bearings (RR–FRBs) represent a suitable solution for structures in developing countries. Such devices can be produced using simple manufacturing procedures at a limited cost with respect to conventional isolators. Full-scale tests on RR–FRBs featured energy dissipation values similar to those associated with high-damping natural rubber bearings (HDRBs). Equivalent viscous damping, ranging from 10 to 15%, resulted from testing of RR–FRBs, with poor degradation after cyclic loading. On the other hand, a sensible softening response, associated with the axial–shear interaction, which is much more significant compared to that exhibited by HDRBs, was observed. As a result, the numerical description of the cyclic behavior of the RR–FRBs appears to be more challenging than that of HDRBs. In past studies, simple bilinear hysteresis models were adopted to describe the cyclic behavior of low-cost rubber bearings, thus completely neglecting the P-delta effects which significantly influence the dynamic behavior of such bearings. In this paper, advanced hysteresis numerical models, able to capture the nonlinear response of RR–FRBs, were examined and properly calibrated using a powerful optimization technique, the differential evolution algorithm. Preliminary results of the numerical analyses, performed in OpenSees, were described and compared with those of experimental tests on low-cost rubber bearings. The findings of this study represent the first step of a characterization procedure aimed to provide an accurate representation of the dynamic behavior of these particular bearings. Obviously, additional studies are needed to compare results of response history analyses with those of experimental tests for real structures on RR–FRBs. In this optic, the present paper, along with further studies, could provide a new impulse for the application of low-cost rubber-based devices in current practice

    Seismic Retrofitting Resilience-Based for Strategic RC Buildings

    No full text
    The resilience of communities is given by the ideal convolution of the resilience of all their single parts. Strategic buildings require high levels of performance during and after a seismic sequence. Consequently, the seismic retrofitting of old strategic buildings is a central issue in prevention and mitigation strategies. The core of the study is a resilience approach to the seismic retrofitting of existing strategic buildings. Different performance levels are considered and four different retrofitting techniques are compared according to their fragility, and their post-earthquake cost and time recovery analyses. Lastly, the retrofitting techniques are compared based on the considered resilience index, which in turn is related to the estimated reduction of the seismic losses owing to the different retrofitting techniques, but especially to the effectiveness of the intervention based on the relevant cost and recovery times. In other words, these aspects take into account the key role of a building’s characteristics, and its public and strategic role during and after an earthquake. The intervention is selected not only (as is currently done) to reduce its construction times and costs, but to limit the service interruption after earthquakes. The results of this study could be operatively used as support tools in the seismic retrofitting of strategic buildings, either individually or on a large territorial scale

    A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy)

    No full text
    Comprehensive methodologies based on a fully probabilistic approach (i.e., the performance-based earthquake engineering approach, PBEE), represent a refined and accurate tool for the seismic performance assessment of structures. However, those procedures are suitable for building-specific evaluations, appearing extremely time-consuming if applied at the urban scale. In the proposed contribution, simplified loss assessment procedure will be applied at the urban scale with reference to the residential building stock of the center of Potenza. After the identification of the main reinforced concrete (RC) structural typologies and the definition of specific archetype building numerical models, the direct estimation of expected annual loss (DEAL) methodology will be applied to derive the EAL (i.e., expected annual loss) of RC buildings, deriving information on the effectively seismic quality (or seismic resilience) of the aforementioned built heritage at urban scale. Similarly, the monetary losses associated with downtime are evaluated. Preliminary considerations on the socio-economic effects of seismic scenarios on the territorial scale are also proposed

    Estimating direct and indirect losses due to earthquake damage in residential RC buildings

    No full text
    The downtime due to earthquake damage in RC buildings is examined. The rational component of downtime is evaluated based on the results of probabilistic seismic loss assessment analyses, using suitable time estimating manuals for civil construction works. The irrational component of downtime is derived from empirical data relevant to post-earthquake reconstruction in Italy. Suitable criteria are then adopted to monetize the downtime for indirect loss estimation. Finally, a simplified model, expressing indirect monetary loss as a function of the earthquake intensity level, is tentatively proposed, to be incorporated in practice-oriented procedures for the estimation of the expected annual loss of residential RC buildings
    corecore