30 research outputs found

    Body condition scoring of Bornean banteng in logged forests

    Get PDF
    © The Author(s) 2016. Background The Bornean banteng (Bos javanicus lowi) is an endangered subspecies that often inhabits logged forest; however very little is known about the effects of logging on their ecology, despite the differing effects this has on other ungulate species. A body condition scoring system was created for the Bornean banteng using camera trap photographs from five forests in Sabah, Malaysia, with various past and present management combinations to establish if banteng nutrition suffered as a result of forest disturbance. Results One hundred and eleven individuals were photographed over 38,009 camera trap nights from April 2011 to June 2014 in five forests. Banteng within forests that had a recent history of reduced-impact logging had higher body condition scores than banteng within conventionally logged forest. Conversely, when past logging was conducted using a conventional technique and the period of forest regeneration was relatively long; the banteng had higher body condition scores. Conclusion The body condition scoring system is appropriate for monitoring the long-term nutrition of the Bornean banteng and for evaluating the extent of the impact caused by present-day reduced-impact logging methods. Reduced-impact logging techniques give rise to individuals with the higher body condition scores in the shorter term, which then decline over time. In contrast the trend is opposite for conventional logging, which demonstrates the complex effects of logging on banteng body condition scores. This is likely to be due to differences in regeneration between forests that have been previously logged using differing methods

    Body condition scoring of Bornean banteng in logged forests

    Get PDF
    Background The Bornean banteng (Bos javanicus lowi) is an endangered subspecies that often inhabits logged forest; however very little is known about the effects of logging on their ecology, despite the differing effects this has on other ungulate species. A body condition scoring system was created for the Bornean banteng using camera trap photographs from five forests in Sabah, Malaysia, with various past and present management combinations to establish if banteng nutrition suffered as a result of forest disturbance. Results One hundred and eleven individuals were photographed over 38,009 camera trap nights from April 2011 to June 2014 in five forests. Banteng within forests that had a recent history of reduced-impact logging had higher body condition scores than banteng within conventionally logged forest. Conversely, when past logging was conducted using a conventional technique and the period of forest regeneration was relatively long; the banteng had higher body condition scores. Conclusion The body condition scoring system is appropriate for monitoring the long-term nutrition of the Bornean banteng and for evaluating the extent of the impact caused by present-day reduced-impact logging methods. Reduced-impact logging techniques give rise to individuals with the higher body condition scores in the shorter term, which then decline over time. In contrast the trend is opposite for conventional logging, which demonstrates the complex effects of logging on banteng body condition scores. This is likely to be due to differences in regeneration between forests that have been previously logged using differing methods. Keywords Body condition scoring – Camera trap – Habitat degradation – Reduced-impact logging – Sabah – Tropical fores

    Long-term field data and climate-habitat models show that orangutan persistence depends on effective forest management and greenhouse gas mitigation

    Get PDF
    BackgroundSoutheast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation.Methodology/principal findingsUsing a long time-series of orangutan nest counts for Sabah (2000-10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions.Conclusions/significanceWe find strong quantitative support for the Sabah government's proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.Stephen D. Gregory, Barry W. Brook, Benoît Goossens, Marc Ancrenaz, Raymond Alfred, Laurentius N. Ambu and Damien A. Fordha

    Genetics and the last stand of the Sumatran rhinoceros Dicerorhinus sumatrensis

    Get PDF
    The Sumatran rhinoceros Dicerorhinus sumatrensis is on the brink of extinction. Although habitat loss and poaching were the reasons of the decline, today's reproductive isolation is the main threat to the survival of the species. Genetic studies have played an important role in identifying conservation priorities, including for rhinoceroses. However, for a species such as the Sumatran rhinoceros, where time is of the essence in preventing extinction, to what extent should genetic and geographical distances be taken into account in deciding the most urgently needed conservation interventions? We propose that the populations of Sumatra and Borneo be considered as a single management unit

    Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven?

    Get PDF
    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated

    Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven?

    No full text
    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated

    Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation

    Get PDF
    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Noninvasive genetic sampling on the rare sumatran rhinoceros (Dicerorhinus sumatrensis): Identification of the host species from the blood meal collected from the tabanid fly (Tabanidae: Haematopota sp.)

    No full text
    Objective:To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Methods:Blood meal was recovered from the abdomen of an engorged tabanid fly(Haemotopota sp.) which was captured immediately after biting a Sumatran rhino in captivity.the blood was applied on to a Whatman FTA blood card. Subsequent laboratory work was conducted to extract,amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinocheros and subjecting it to the same laboratory process. Results:BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from rhino. Conclusions: This method could be used in the field application to noninvasively collect genetics samples. Collection of tabanids and other haematophagous artropods(e.g.mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases
    corecore