111 research outputs found

    Two Higgs Pair Heterotic Vacua and Flavor-Changing Neutral Currents

    Full text link
    We present a vacuum of heterotic M-theory whose observable sector has the MSSM spectrum with the addition of one extra pair of Higgs-Higgs conjugate superfields. The quarks/leptons have a realistic mass hierarchy with a naturally light first family. The double elliptic structure of the Calabi-Yau compactification threefold leads to two ``stringy'' selection rules. These classically disallow Yukawa couplings to the second Higgs pair and, hence, Higgs mediated flavor-changing neutral currents. Such currents are induced in higher-dimensional interactions, but are naturally suppressed. We show that our results fit comfortably below the observed upper bounds on neutral flavor-changing processes.Comment: 52 pages, 3 figures, 1 table, requires feynm

    Coupling techniques for nonlinear hyperbolic equations. III. The well-balanced approximation of thick interfaces

    Full text link
    We continue our analysis of the coupling between nonlinear hyperbolic problems across possibly resonant interfaces. In the first two parts of this series, we introduced a new framework for coupling problems which is based on the so-called thin interface model and uses an augmented formulation and an additional unknown for the interface location; this framework has the advantage of avoiding any explicit modeling of the interface structure. In the present paper, we pursue our investigation of the augmented formulation and we introduce a new coupling framework which is now based on the so-called thick interface model. For scalar nonlinear hyperbolic equations in one space variable, we observe that the Cauchy problem is well-posed. Then, our main achievement in the present paper is the design of a new well-balanced finite volume scheme which is adapted to the thick interface model, together with a proof of its convergence toward the unique entropy solution (for a broad class of nonlinear hyperbolic equations). Due to the presence of a possibly resonant interface, the standard technique based on a total variation estimate does not apply, and DiPerna's uniqueness theorem must be used. Following a method proposed by Coquel and LeFloch, our proof relies on discrete entropy inequalities for the coupling problem and an estimate of the discrete entropy dissipation in the proposed scheme.Comment: 21 page

    The B-L/Electroweak Hierarchy in Heterotic String and M-Theory

    Full text link
    E8 x E8 heterotic string and M-theory, when compactified on a Calabi-Yau threefold admitting an SU(4) vector bundle with Wilson lines, can give rise to the exact MSSM spectrum with three right-handed neutrino chiral superields, one per family. Rank preserving Wilson lines require that the standard model group be augmented by a gauged U(1)_B-L. Since there are no fields in this theory for which 3(B-L) is an even, non-zero integer, the gauged B-L symmetry must be spontaneously broken at a low scale, not too far above the electroweak scale. It is shown that in these heterotic standard models, the B-L symmetry can be broken, with a phenomenologically viable B-L/electroweak hierarchy, by at least one right-handed sneutrino acquiring a vacuum expectation value. This is explicitly demonstrated, in a specific region of parameter space, using a renormalization group analysis and soft supersymmetry breaking operators. The vacuum state is shown to be a stable, local minimum of the potential and the resultant hierarchy is explicitly presented in terms of tan[beta].Comment: 16 pages; typos fixed, analysis generalize

    Dynamics of shallow impact cratering

    Get PDF
    We present data for the time-dependence of wooden spheres penetrating into a loose non-cohesive packing of glass beads. The stopping time is a factor of three longer than the time d/vd/v_\circ needed to travel the total penetration distance dd at the impact speed vv_\circ. The acceleration decreases monotonically throughout the impact. These kinematics are modelled by a position- and velocity-dependent stopping force that is constrained to reproduce prior observations for the scaling of the penetration depth with the total drop distance.Comment: 4 pages, experimen

    Penetration depth for shallow impact cratering

    Get PDF
    We present data for the penetration of a variety of spheres, dropped from rest, into a level non-cohesive granular medium. We improve upon our earlier work [Uehara {\it et al.} Phys. Rev. Lett. {\bf 90}, 194301 (2003)] in three regards. First, we explore the behavior vs sphere diameter and density more systematically, by holding one of these parameters constant while varying the other. Second, we prepare the granular medium more reproducibly and, third, we measure the penetration depth more accurately. The new data support our previous conclusion that the penetration depth is proportional to the 1/2 power of sphere density, the 2/3 power of sphere diameter, and the 1/3 power of total drop distance

    The B-L/Electroweak Hierarchy in Smooth Heterotic Compactifications

    Full text link
    E8 X E8 heterotic string and M-theory, when appropriately compactified, can give rise to realistic, N=1 supersymmetric particle physics. In particular, the exact matter spectrum of the MSSM, including three right-handed neutrino supermultiplets, one per family, and one pair of Higgs-Higgs conjugate superfields is obtained by compactifying on Calabi-Yau manifolds admitting specific SU(4) vector bundles. These "heterotic standard models" have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge group of the standard model augmented by an additional gauged U(1)_{B-L}. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. In a previous paper, we presented the results of a renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken with a B-L/electroweak hierarchy of O(10) to O(10^{2}). In this paper, we present the details of that analysis, extending the results to include higher order terms in tan[beta]^{-1} and the explicit spectrum of all squarks and sleptons.Comment: 60 pages, 6 figure

    Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models

    Full text link
    The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3 Wilson lines to the MSSM with three right-handed neutrino supermultiplets and gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is analyzed. It is shown that there is a unique basis for which the initial soft supersymmetry breaking parameters are uncorrelated and for which the U(1) x U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines "turn on" at different scales, there is an intermediate regime with either a left-right or a Pati-Salam type model. We compute their spectra directly from string theory, and adjust the associated mass parameter so that all gauge parameters exactly unify. A detailed analysis of the running gauge couplings and soft gaugino masses is presented.Comment: 59 pages, 9 figure

    Low-speed impact craters in loose granular media

    Get PDF
    We report on craters formed by balls dropped into dry, non-cohesive, granular media. By explicit variation of ball density ρb\rho_{b}, diameter DbD_{b}, and drop height HH, the crater diameter is confirmed to scale as the 1/4 power of the energy of the ball at impact: Dc(ρbDb3H)1/4D_{c}\sim(\rho_{b}{D_{b}}^{3}H)^{1/4}. Against expectation, a different scaling law is discovered for the crater depth: d(ρb3/2Db2H)1/3d\sim({\rho_{b}}^{3/2}{D_{b}}^{2}H)^{1/3}. The scaling with properties of the medium is also established. The crater depth has significance for granular mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure

    Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea)

    Get PDF
    Image-based research in mesophotic and deep environments of the Mediterranean Sea has significantly increased during the past decades. So far, this research has been focused on the ecology of key structuring organisms such as scleractinians, antipatharians, gorgonians or large demosponges. However, the ecology of true soft corals has barely been studied and is still in a very preliminary stage. To overcome this situation, soft coral assemblages in shelf and slope environments of the Menorca Channel (Western Mediterranean Sea) have been studied through the quantitative analysis of 85 video transect recorded over 38500 m2. Highest soft coral diversity was encountered on the shelf edge, resembling deep Mediterranean gorgonian patterns. Three soft coral assemblages, segregated by depth, substrate, and slope were identified: two monospecific ones composed by Nidalia studeriand Alcyonium palmatum, respectively and a multispecific one composed by Paralcyonium spinulosum, Alcyonium sp., Chironephthya mediterranea and Daniela koreni. The evaluated species presented average densities within the same range as other deep Mediterranean anthozoans ranging from 1 to 9 col.·m−2. However, N. studeri and P. spinulosum punctually formed dense monospecific aggregations, reaching maximum densities of 49 col.·m−2 and 60 col.·m−2 respectively. Both species monopolized vast extensions of the continental shelf and shelf edge. The identification and ecological characterization of these assemblages brings new insight about deep Mediterranean anthozoan communities, and provides baseline for future management plans in the study area.En prensa3,26

    B-L Cosmic Strings in Heterotic Standard Models

    Full text link
    E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken N=1 supersymmetric theories with the exact matter spectrum of the MSSM, including three right-handed neutrinos and one Higgs-Higgs conjugate pair of supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge group of the standard model augmented by an additional gauged U(1)_{B-L}. Their minimal content requires that the B-L symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. The soft supersymmetry breaking operators can induce radiative breaking of the B-L gauge symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is shown that U(1)_{B-L} cosmic strings occur in this context, potentially with both bosonic and fermionic superconductivity. We present a numerical analysis that demonstrates that boson condensates can, in principle, form for theories of this type. However, the weak Yukawa and gauge couplings of the right-handed sneutrino suggests that bosonic superconductivity will not occur in the simplest vacua in this context. The electroweak phase transition also disallows fermion superconductivity, although substantial bound state fermion currents can exist.Comment: 41 pages, 5 figure
    corecore